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1.13 On finding roots of a complex number  

1.13.1 The general roots of a complex number 

In section 1.7.4 we saw how to find the square root of a complex number z when z was 

expressed in Cartesian form. The approach used in that section could, in principle, be used to 

find cube roots, fourth roots, etc., but the algebra would become very complicated very quickly. 

DeMoivre’s theorem allows us to find roots of complex numbers much more easily. 

 

For example, given � = −2 + 2� we can find the cube roots of z as follows: � = |�| = √8, and 

� = arg��� = tan���2/�−2�� + � = 3�/4. Therefore,  

 ��/ = �√8��/ !cos 3�4 + � sin 3�4 &�/  = �√8��/ !cos 3�12 + � sin 3�12& . [*] 

 

We can easily check this as 

*�√8��/ !cos 3�12 + � sin 3�12&+ = √8 !cos 3�4 + � sin 3�4 & = −2 + 2� . 
 

But we know that √�,
 has three roots so what are the other two roots? Well, another solution is 

��/ = �√8��/ �cos 11�/12 + � sin 11�/12� , 
and yet another solution is  

��/ = �√8��/ �cos 19�/12 + � sin 19�/12� , 
both of which can be similarly checked to equal −2 + 2�. 

 

So the question is, How do we obtain these other two solutions? To answer this question notice 

that to get the other two roots we have moved from 3�/12 to 11�/12 to 19�/12, i.e. we have 

added 8�/12 to the argument of each successive root. More precisely, we can calculate all the 

roots based on the argument 8/�/12 = 2/�/3, where / = 0, 1, 2. This is equivalent to saying 

that our argument must be ��/2 + 2/��/3. As such we see that we have included in our 

argument the periodic nature of the sin and cos functions, i.e. cos�� + 2/�� = cos � and sin�� + 2/�� = sin �. 
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Therefore equation [*] is extended to include this aspect of periodicity:  

��/   = �√8�� !cos !3�4 + 2/�& + � sin !3�4 + 2/�&&�/  , 
 = �√8�� !cos 3�/4 + 2/�3 + � sin 3�/4 + 2/�3 & . 

 

from which we obtain all three roots to � = −2 + 2� by setting / = 0,1,2, namely 

1) / = 0:  

�1 = �√8�� !cos !3�12& + � sin !3�12&& , 
 

 this being called the principal root; 

 

2) / = 1: 

�� = �√8�� !cos !11�12 & + � sin !11�12 && ; 
3) / = 2: 

�3 = cos !19�12 & + � sin !19�12 & = cos !5�12& − � sin !5�12& , 
 

where �3 has been converted so that its argument lies in −� < � ≤ �.  

 

Our aim is therefore not just to perform the cube root of � but to do so in such a way that we 

obtain all roots which, when cubed, recover our original complex number. Formally speaking, 

we don’t say that we want to find �7 = ��/  for a complex number �. We say that we want all 

solutions �7 such that � = �7 . This then guarantees us stating all roots �7. 

 

Notice that root �3 can also be arrived at directly by setting / = −1 instead of / = 3: 

��� = cos !3�/4 − 2�3 & + � sin !3�/4 − 2�3 & = cos !5�12& − � sin !5�12& . 
 

Expressing the root in this way automatically keeps the argument in the required interval of −� < � ≤ �. 
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Also notice that the roots are equiangular with respect to each other, changing from 3�/12 to 11�/12 to 19�/12, so that each root is 2�/3 away from the other two roots, as illustrated in 

the Argand diagram below: 

 

We could have continued finding more roots by putting / = 3, 4, 5, … If / = 3 we have 

� = cos !13�6 & + � sin !13�6 & = cos :�6; + � sin :�6; = √32 + 12 � . 
In other words we have cycled back to �1. Using / = 4 would return us to �� and using / = 5 

would return us to �3 (confirm this). Similarly for / = 6, 7, 8 and / = 9, 10, 11, etc. So the cube 

roots of z cycle round every / + 3. The same is true if k is a negative integer. So there are in fact 

an infinite number of cube roots to � = �, but only three distinct roots. 

 

Therefore, in general, given � = ��cos � + � sin ��, the n distinc nth roots of � = cos � + � sin � 

are given by  

 ��/= = ��/= !cos !� + 2/�
 & + � sin !� + 2/�
 && (42) 

where / = 0, ±1, ±2, ±3, … , ±�
 − 1�, and remembering that −� < � ≤ �. The proof of  

(42Error! Reference source not found.), along with its more precise definition, is given in 

section 1.13.2 below. 

 

There are several point to note about equation (42Error! Reference source not found.): 

• it is the general expression for finding the first n roots of a complex number z;  

• it includes the feature that the roots are equiangular; 
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• it has the feature that, although k has n values ranging from / = 0 to / = ±�
 − 1� we 

can in fact extend k beyond ±�
 − 1�: z can in fact have an infinite number of n sets of 

roots, with the first set of n roots being �1, ��, �3, … , �=��, the second set of n roots being �=, �=?�, �=?3, … , �3=��, the thirds set of n roots being �3=, �3=?�, �3=?3, … , � =��, etc.  

• the first set of n roots are the distinct roots of z. All other roots are repetitions of the 

roots in this first set of n roots. 

• if we choose to count k in positive integers then we will have to adjust the  argument of 

certain roots in order to satisfy the interval of −� < � ≤ �. Otherwise we need to use 

the relevant negative integer k values in order to automatially get the roots in this 

aforementioned interval. 

 

Example 1: Consider finding the four 4th roots of � = 1 + �. In this case we have � = |�| = √2 

and � = Arg��� = �/4. Hence � = √2�cos �/4 + � sin �/4�. Recasting this so as to take account 

of the periodic nature of sin and cos we have 

� = √2 :cos :�4 + 2/�; + � sin :�4 + 2/�;; . 
for / = 0, 1, 2, 3. Now taking the fourth roots we have 

√�@
 = ��/A = �√2��/A :cos :�4 + 2/�; + � sin :�4 + 2/�;;�/A , 
   = �√2��/A !cos !�/4 + 2/�4 & + � sin !�/4 + 2/�4 && . 

To find the principal fourth roots we set / = 0 to obtain 

�1 = �√2��/A :cos : �16; + � sin : �16;; . 
The second root is obtained by setting / = 1: 

�� = �√2��/A !cos !9�16& + � sin !9�19&& . 
The third and fourth roots are obtained by setting / = 2, 3, to give �3 = �√2��/A�cos�17�/16� +
� sin�17�/16�� , and � = �√2��/A�cos�26�/16� + � sin�26�/16�� . We now adjust the 

arguments of �3 and �  so that they fall within the interval  −� < � ≤ �. Hence  

�3 = �√2��/A !cos !− 15�16 & + � sin !− 15�16 && = �√2��/A !cos !15�16 & − � sin !15�16 && , 
and 
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� = �√2��/A !cos !−7�16 & + � sin !−7�16 && = �√2��/A !cos !7�16& − � sin !7�16&& . 
On the other hand we can set / = −1 and / = −2 to get the correct roots immediately: 

��� = �√2��/A !cos !−7�16 & + � sin !−7�16 && = �√2��/A !cos !7�16& − � sin !7�16&& , 
and ��3 = �√2��/A !cos !−15�16 & + � sin !−15�16 && = �√2��/A !cos !15�16 & − � sin !15�16 && . 
 

Plotting these four roots on an Argand diagram we have 

 

As for the previous example when we were finding the cube roots of � = �, so here also the roots 

are equally spaced out in terms of there angles with repsect to each other. In fact all roots are 

separated by �/2 radians, as can be seen by looking at the change in angle between all four 

roots. 

 

Example 2: Consider finding the seven 7th roots of � = −3 − 2�. In this case we have � = |�| =
√13 and � = tan�−2/�−3�� − � ≈ −2.55 radians. Hence � = √13�cos�−2.55� + � sin�−2.55��. 

Recasting this so as to take account of the periodic nature of sin and cos we have 

� = √13�cos�−2.55 + 2/�� + � sin�−2.55 + 2/��� . 
for / = 0, 1, 2, 3, 4, 5, 6. Now taking the seventh roots we have 

√�C = ��/D = �√13��/D�cos�−2.55 + 2/�� + � sin�−2.55 + 2/����/D , 
 = �√13��/D !cos !−2.55 + 2/�7 & + � sin !−2.55 + 2/�7 && . 

 

It is left as an exercise for you to find the seven individual seventh roots, all in principal 

argument form.   
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These seven roots are illustrated below: 

 

 

 

Example 3: Knowing that the roots of complex number z are equiangular we can find the 

location of all roots of z given one of the roots of a z. For example, if we know that one cube root 

of a complex number z is �� = −1, what are the other two roots? Well, we know that the sum of 

the three arguments must be 2�.  

 

If we let E be the angle between each root we have 3E = 2�, implying that E = 2�/3. Since Arg���� = � we have arg��1� = � − 2�/3, hence Arg��1� = arg��1� = �/3. Also, arg��3� = � +2�/3 = 5�/3, hence Arg��3� = −�/3 (note that we could simply have added 2�/3 to Arg���� 

to get the next root, and again added 2�/3 to this root to get the final root, all th ewhile 

readjusting our argument so as to be a principal argument). 

 

Similarly, if we know that one fourth root of a complex number z is �3 = −1 − � we know that 

4E = 2�, again where E be the angle between each root. Hence E = �/2 is the angle between 

each root. Now, Arg��3� = −3�/4, therefore we simply need to add (or subtract) �/2 again and 

again until we obtain the other three roots. Adding gives us −�/4, �/4, 3�/4. So the principal 

arguments of the roots are Arg��1� = �/4, Arg���� = �/4, Arg��3� = −3�/4, Arg�� � = −�/4. 

 

  



153 

 

These two examples are illustrated below. 

  

 Given one root at �� = −1 Given one root at �3 = −1 − � 

 

Example 4: Notice one difference between the roots of � = � and the roots of � = 1 + �. The 

former complex number is pure imaginary, and one of its roots is real. The latter complex 

number is neither pure imaginary nor pure real, and none of its roots are real. In general it is 

always the case that  

i) complex number which are pure imaginary or pure real always have at least one real 

root; 

ii) complex complex which are neither pure real nor pure imaginary does not have any real 

roots, provided we are dealing with a finite number of roots. If we take the nth root of z, 

and let 
 → ∞, then one root of z will be real, this being �7→H = 1. To see this consider 

��/= = ��/= !cos !� + 2/�
 & + � sin !� + 2/�
 && . 
 As 
 → ∞, 1/
 → 0. Therefore ��/= → 1 and �� + 2/��/
 → 0. Hence  

�7→H = lim=→H ��/= = 1�cos 0 + � sin 0� = 1 . 
 

This case can be illustrated as follows: for the complex number � = 1 + � we can track the 

distribution of roots of ��/= from 
 = 2 onwards to see that none of them are ever real except 

at lim=→H ��/=. The diagram below shows the case of the twenty-seven 27th roots of z (labelled as 

K in the diagram), with Arg�K�� = 0.0291 radians. 
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Example 5: When finding roots of complex numbers we note that substituting / = 0 into 

equation (42) gives us the principal value. This value is the principal value because of interval −� < � ≤ �. Suppose, instead, that our interval for � were to be � ≤ � < 3�. what then would 

be our principal valur for the cube root of � = �?  

 

Well, for � = � we have 

��/ = cos !�/2 + 2/�3 & + � sin !�/2 + 2/�3 & . 
For the interval � ≤ � < 3� our principal value will occur when / = 3, which will give us the 

first argument greater than, or equal to, �. Hence  

� = cos !7�6 & + � sin !7�6 & . 
 

Similarly if we chose the interval −3� < � ≤ −� then our principal value would be the one 

including the first argument less than, or equal to, −�. This occurs when / = −2. Hence  

��3 = cos !−7�6 & + � sin !−7�6 & . 
 

Example 6: To find all values of � = √−32L
 we proceed as follows: Finding � and � in the usual 

way we have −32 = 32Mcos�� + 2/�� + � sin�� + 2/��N . 
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Applying DeMoivre’s theorem we obtain  

�−32��/O = �32��/OMcos�� + 2/�� + � sin�� + 2/��N�/O = 2 Pcos !� + 2/�5 & + � sin !� + 2/�5 &Q. 
 

When / = 0,    �1 = 2�cos �/5 + � sin �/5� , 
When / = 1,    �� = 2�cos 3�/5 + � sin 3�/5� , 
When / = 2,    �3 = 2�cos 5�/5 + � sin 5�/5� = −2 , 
When / = 3,    � = 2�cos 7�/5 + � sin 7�/5� = 2�cos 3�/5 − � sin 3�/5� , 
When / = 4,    �A = 2�cos 9�/5 + � sin 9�/5� = 2�cos �/5 − � sin �/5� . 
 

Continuing to count / = 5, 6, 7, … or / = −1, −2, −3, … would only repeat the values of the roots 

above. Plotting these roots on an Argand diagram is illustrated below. Notice that all five roots 

lie on a circle of radius 2, and each complex number can be seen as the vertex of a pentagon. 

 

Example 7: To find all values of � = �−1 − �√3��/A
 we proceed as follows: Finding � and � in 

the usual way we have two choices about how to express −1 − �√3 in polar form. We can either 

write 

−1 − �√3 = 2 !cos !4�3 + 2/�& + � sin !4�3 + 2/�&& , 
and wait until we have found all four roots before adjusting our arguments to be in the interval 

−� < � ≤ �, or we can express −1 − �√3 immediately in terms of its principal argument, i.e  

−1 − �√3 = 2�cos�−2�/3 + 2/�� + � sin�−2�/3 + 2/��� . 
In either case it does not make a difference. Provided the arguments of our roots are ultimately 

expressed in −� < � ≤ � we will always obtain the same values for our roots. 
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Hence applying DeMoivre’s theorem on the latter equation we obtain  

�−1 − �√3��/A = 2�/A Pcos !− 2�3 + 2/�& + � sin !− 2�3 + 2/�&Q�/A
 

 = 2�/A Pcos !−2�/3 + 2/�4 & + � sin !−2�/3 + 2/�4 &Q . 
 

 

When / = 0,  �1 = 2�/A�cos�−2�/12� + � sin�−2�/12�� , 
When / = 1,  �� = 2�/A�cos 4�/12 + � sin 4�/12� , 
When / = 2,  �3 = 2�/A�cos 10�/12 + � sin 10�/12� , 
When / = 3,  � = 2�/A�cos 16�/12 + � sin 16�/12� = 2�/A�cos 8�/12 − � sin 8�/12� , 
 

Plotting these roots on an Argand diagram is illustrated below. Notice that all four roots lie on 

a circle of radius 2�/A, and each complex number can be seen as the vertex of a square. 

 

 

Example 8: To find all values of � = R16�/�1 + ��S�/T we proceed as follows: Finding � and � in 

the usual way we will separately express 16� and 1 + � in polar form, then simplify the division 

via DeMoivre’s theorem. Hence  

�� = 16� ⟹ � = 16 :cos �2 + � sin �2; , 
�3 = 1 + � ⟹ √2 :cos �4 + � sin �4; . 

There is no need to take account of the periodic nature of sin and cos at this stage since we are 

now going to divide �� by �3 to form the single complex number �.   
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Hence  

���3 = 16�1 + � = 
16√2 . cos �2 + � sin �2cos �4 + � sin �4 , 

 = √128 :cos �4 + � sin �4; , 
 = √128 :cos :�4 + 2/�; + � sin :�4 + 2/�;; , 

for / = 0, 1, 2, 3 … Taking the eighth roots we obtain 

��/T = �√128��/T :cos :�4 + 2/�; + � sin :�4 + 2/�;;�/T , 
 = �√128��/T !cos !�/4 + 2/�8 & + � sin !�/4 + 2/�8 && . 

 

 

When / = 0,  �1 = �√128��/T�cos��/32� + � sin��/32�� , 
When / = 1,  �� = �√128��/T�cos 9�/32 + � sin 9�/32� , 
When / = 2,  �3 = �√128��/T�cos 17�/32 + � sin 17�/32� , 
When / = 3,  � = �√128��/T�cos 25�/32 + � sin 25�/32� , 
When / = 4,  � = �√128��/T�cos 33�/32 + � sin 33�/32� , 

= �√128��/T�cos 31�/32 − � sin 31�/32� , 
When / = 5,  � = �√128��/T�cos 41�/32 + � sin 41�/32� 

= �√128��/T�cos 23�/32 − � sin 23�/32� , 
When / = 6,  � = �√128��/T�cos 49�/32 + � sin 49�/32� 

= �√128��/T�cos 15�/32 − � sin 15/32� , 
When / = 7,  � = �√128��/T�cos 57�/32 + � sin 57�/32� 

= �√128��/T�cos 7�/32 − � sin 7�/32� . 
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Plotting these roots on an Argand diagram is illustrated below. Notice that all eight roots lie on 

a circle of radius �√128��/T
, and each complex number can be seen as the vertex of an octogon. 

 

 

Example 9: To find the exact values of the sum and product of the three roots of � =�cos 3� + � sin 3� ��/  we apply DeMoivre’s theorem to obtain 

� = cos !3� + 2/�3 & + � sin !3� + 2/�3 & , 
from which we have  

for / = 0,   �1 = cos��� + � sin��� = −1 , 
for / = 1,   �� = cos 5�/3 + � sin 5�/3 = cos �/3 − � sin �/3 , 
for / = 2,   �3 = cos 7�/3 + � sin 7�/3 =  cos �/3 + � sin �/3 . 
 

Hence the sum of the roots is �� + �3 = −1 + 2 cos �/3, and since cos�−�/3� = cos��/3� the 

product is �1���3 = −1�cos �/3 + � sin �/3��cos�−�/3� + � sin�−�/3�� = −2 cos�2�/3�. 

 

Exercise: Find the exact values of the sum and product of the five roots of � =�cos � + � sin � �3/O. 

 

Example 10: Given that � = cos � + � sin � suppose we want to find U�1 + ��/�1 − �� in the 

interval 0 < � < � and � < � < 2�. Firstly, for simplicty, let cos � + � sin � ≡ W + �X. Then  

 
1 + �1 − � = 1 + W + �X1 − W − �X (*) 
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Now multiple top and bottom of (*) by the conjugate of the denominator of (*) 

1 + �1 − � = 
1 + W + �X1 − W − �X . 1 − W + �X1 − W + �X , 

 = �. X1 − W , 
 

By using the double-angle trig identities we have cos � = 2 cos��/2� = 1 − 2 sin3��/2� and sin � = sin 2��/2� = 2 sin��/2� . cos��/2�. Hence  

1 + �1 − � = �. 2 sin��/2� cos��/2�1 − �1 − 2 sin3��/2�� , 
which simplifies to  

1 + �1 − � = � cot !�2& . 
Therefore  

Y1 + �1 − � = !� cot !�2&&�/3 = ����/3. Ycot !�2&  . 
 

We now need to find the two roots of ��/3 which, by the usual method, are 

cos �4 + �. sin �4 = √22 + � √22  , for 0 < � < � 

and 

cos 5�4 + �. sin 5�4 = − √22 − � √22  . for � < � < 2� . 
 

Hence, for 0 < � < � 

Y1 + �1 − � = Z√22 + � √22 [ Ycot !�2& = �1 + ��Y12 cot !�2&  , 
and for � < � < 2� 

Y1 + �1 − � = Z− √22 − � √22 [ Ycot !�2& = �1 + ��Y− 12 cot !�2&  . 
 

Example 11: Now that we know about DeMoivre’s theorem we can now solve polynomials in 

z. for eample, to solve �\ − � �1 + �� + � = 0 we can factorise this to be �� − 1��� − �� = 0. 
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Hence either � − 1 = 0 and/or � − � = 0, form which we get the six solutions, via DeMoivre’s 

theorem, to be 

• for � − 1 = 0: �7 = cos�2/�/3� + � sin�2/�/3� for / = 0, 1, 2; 

• for � − � = 0: �7 = cosM�� + 2/��/3N + � sinM�� + 2/��/3N for / = 0, 1, 2. 

 

 Exercises: Solve the following polynomials 

 a) �\ + �� + � − 1 = 0 b) �2 − 3���\ + 1 + 5� = 0 

 c) ��1 + �−2 + ���O − 2� = 0 

 

Example 12: To show that �� = 1 + � is a root of ]��� = ��D + 2��O − 512 we have to convert 

�� into polar form. Hence, 1 + � = √2�cos��/4� + � sin��/4��. Thence  

���D = �√2��D�cos��/4� + � sin��/4���D , 
 = �√2��D�cos�17�/4� + � sin�17�/4�� , 
 = �√2��D�cos��/4� + � sin��/4�� . 

Similarly we have  

��� = �√2��O�cos�−�/4� + � sin�−�/4�� . 
Therefore 

]���� = �√2��D�cos��/4� + � sin��/4�� + 2 ^�√2��O�cos�−�/4� + � sin�−�/4��_ − 512 , 
 = �√2��O ^�√2�3 cos��/4� + 2 cos��/4� + � :�√2�3 sin��/4� − 2 sin��/4�;_ − 512 , 
 = �√2��O�4 cos��/4�� − 512 , 
 = 4�√2��O. √22 − 512 = 0 . 

 

Example 13: Suppose a complex number ` is located in the first quadrant of the Argand 

diagram, and is a cube root of a complex number z. Can there exist a second cube root of z 

located in the first quadrant? Yes. To see this, let � = a + �b = ��cos � + � sin ��.  
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Then  

` = ��/  = ��/ �cos � + � sin ���/  , 
 = ��/ !cos !� + 2/�3 & + � sin !� + 2/�3 && . 

 

The principal value of this is when / = 0. Then ` = ��/ �cos �/3 + � sin �/3�. When / = 3 we 

obtain another root, say c, where c = ��/ �cos�� + 6��/3 + � sin�� + 6��/3�. But this equation 

simplifies to c = ��/ �cos��/3 + 2�� + � sin��/3 + 2��� which is the same value as ` and 

therefore also lie in the first quadrant of the Argand diagram. 

 

Example 14: Suppose z is a complex number that possesses a fourth root ` that is neither real 

nor purely imaginary. We can show that the remaining fourth roots are also neither real nor 

purely imaginary. To do this we again  let � = a + �b = ��cos � + � sin ��, where � ≠ /� and � ≠ /�/2, for / = 0, ±1, ±2, …. Then  

` = ��/A = ��/A�cos � + � sin ���/A , 
 = ��/A !cos !� + 2/�4 & + � sin !� + 2/�4 && . 
 = ��/A !cos !�4 + /�2 & + � sin !�4 + /�2 && . 

 

The principal value of this is when / = 0. Then ` = ��/A�cos �/4 + � sin �/4� which, by 

definition, is neither real nor purely imaginary. The three remaining roots are given by  

• ��/A�cos��/4 + �/2� + � sin��/4 + �/2�� which is perpendicular to ` and is therefore 

neither real nor purely imaginary; 

• ��/A�cos��/4 + �� + � sin��/4 + ��� which is perpendicular to the previous root and is 

therefore neither real nor purely imaginary; 

• ��/A�cos��/4 + 3�/2� + � sin��/4 + 3�2�� which is perpendicular to the previous root 

and is therefore neither real nor purely imaginary; 

 

1.13.2 Deriving the equation for the roots of a complex number 

To derive equation (42Error! Reference source not found.) we proceed as follows: Consider 

a complex number z for which we wish to find the n nth roots. To this end we want to find all 

roots �7 = ��/=, for / = 0, 1, 2, … , 
 − 1. We have not yet created the rooting operation, so we 
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do not know how it works. Therefore, let us instead study � = �7=, since we know how to power 

complex numbers.  

 

Therefore, let � = ��cos � + � sin �� be the number we wish to take the nth root of. Applying 

DeMoivre’s theorem to ��/= we obtain  

��/= = ��/= !cos �
 + � sin �
& . 
This represents only one answer to the root, say �1. So let �1 = e�cos E + � sin E�. Then � = �1=, 

hence 

 ��cos � + � sin �� = e=�cos E + � sin E�= = e=�cos 
E + � sin 
E� . {*} 

Comparing Re and Im parts we have � cos � = e= cos 
E and � sin � = e= sin 
E. If we square 

and add these two equations we obtain �3�cos3 � + sin3 �� = �e=�3�cos3 
E + sin3 
E� 

implying �e=�3 = �3  

e = √�f
 . 

where the positive root is taken since R is the modulus of �. 

 

Now, we know that e=�cos 
E + � sin 
E� is only one solution to the roots of �. The other 

solutions are found by accounting for the periodic nature of cos and sin, i.e. cos�
E + 2/�� =cos E or sin�
E + 2/�� = sin E where / ∈ ℤ. Hence {*} becomes 

��cos � + � sin �� = e=�cos�
E + 2/�� + � sin�
E + 2/��� , 
implying 
E + 2/� = �, and therefore 

E = � + 2/�
  . 
for / = 0, ±1, ±2, … (note 2/� for / = 0, ±1, ±2, … is the same as −2/� for / = 0, ∓1, ∓2, …). 

 

We are now in a position to define the meaning of the rooting operation �7 = ��/=, / =0, ±1, ±2, …, to be  

the n distinct nth roots of a complex number � given by  

(43)  �7 = ��/= = ��/= !cos !� + 2/�
 & + � sin !� + 2/�
 && , / ∈ ℤ. 
such that �7= = �, for / = 0, 1, 2, … , 
 − 1,  
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i.e. such that any solutions �7, when powered by n, give �. In other words, we write our 

definition for rooting in terms of the powering of complex numbers, and in doing the emphasise 

is on finding all solutions, and not just some solutions. 

 

Since / ∈ ℤ it looks like (43) has an infinite number of solutions. In one sense this is true, but 

not all these solutions are distinct. All we are interested in at this time are the distinct solutions 

of (43). To see that there are indeed a limited number of distinct solutions let /� and /3 be 

integers which differ by a multiple of n, where 
 ∈ ℤ, i.e. /3 = /� + j
. Then  

 � + 2/3�
 = � + 2��/� + j
�
 = � + 2/��
 + 2j� . 
 

So �� + 2�/3�/
 and �� + 2�/��/
 differ by multiples of 2�. So in (43) all solutions after / =0, 1, 2, … , 
 − 1 are repeats of those based on / = 0, 1, 2, … , 
 − 1. 

 

1.13.3 Extending exponentiation to rational numbers – The case of irreducible p/q  

We have seen how to use DeMoivre’s theorem to evaluate roots of the form �cos � + � sin ���/= 

for positive integer values of n. Let us now study the use of DeMoivre’s theorem to evaluate 

roots of the form �cos � + � sin ��k/l where p and q are positive integers, and where p/q is 

irreducible, i.e. in its lowest terms (sometimes described as p and q being co-prime). 

 

Let us start by considering the case of real numbers. For a = 4 we know that the positive root 

is √a = √4 = 2. We can then cube this result to obtain 2 = 8. On the other hand we could have 

performed a = 4 = 64 and then taken the positive root: √64 = 8. So here we have that 

�√a� = √a , and in general we have � √af �m = √amf
 when x is real. In other words, the 

operation of powering and rooting is consistent, whichever way around we perform these 

operations. 

 

However, having seen in earlier sections that the arithmetic of real numbers does not 

completely carry over to the arithmetic of complex numbers the question we need to ask is, Is 

it true that � √�f �m = √�mf
 for a complex number z?  

 

To help us answer this question consider � = 1 + �. Suppose we want to evaluate �3/O. There 

are three ways in which we can do this using DeMoivre’s theorem:  
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i) The first way is the usual way of firstly accounting for the periodicity of cos and sin, and 

then applying DeMoivre’s theorem: 

�3/O = �√2�3/O :cos �4 + � sin �4;3/O , 
So �3/O = �√2�3/O :cos :�4 + 2/�; + � sin :�4 + 2/�;;3/O , 

 = �√2�3O !cos 25 ��/4 + 2/�� + � sin 25 ��/4 + 2/��& . 
 

ii) The second way is to firstly apply DeMoivre’s theorem for the squared power, then 

account for the periodicity of cos and sin, then use DeMoivre’s theorem again on the fifth 

root power: 

�3/O = �√2�3/O :cos �4 + � sin �4;3/O , 
 = �√2�3/O !cos !2�4 & + � sin !2�4 &&�/O , 
 = �√2�3/O !cos !2�4 + 2/�& + � sin !2�4 + 2/�&&�/O , 
 = �√2�3/O !cos !2�/4 + 2/�5 & + � sin !2�/4 + 2/�5 && . 

 

iii) The third way is to apply DeMoivre’s theorem on the rational root, and then account for 

the periodicity of cos and sin:  

�3/O = �√2�3/O :cos �4 + � sin �4;3/O , 
 = �√2�3/O !cos !2�20& + � sin !2�20&& , 
 = �√2�3/O :cos : �10 + 2/�; + � sin : �10 + 2/�;; . 
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Letting cos � + � sin � ≡ cis � we then obtain the following results for / = 0, 1, 2, 3, 4: 

 

 (1) (2) (3) 

k �n (as in i)) �n (as in ii)) �n (as in iii)) 

0 �√2�3/O cis : �10; �√2�3/O cis : �10; �2��/O cis : �10; 

k �n (as in i)) �n (as in ii)) �n (as in iii)) 

1 �√2�3/O cis !9�10& �√2�3/O cis !5�10& �2��/O cis !21�10 & 

2 �√2�3/O cis !17�10 & �√2�3/O cis !9�10& �2��/O cis !41�10 & 

3 �√2�3/O cis !5�10& �√2�3/O cis !13�10 & �2��/O cis !61�10 & 

4 �√2�3/O cis !13�10 & �√2�3/O cis !17�10 & �2��/O cis !81�10 & 

 

All three columns of �7 in the table above are solutions to �3/O. However, only solution in column 

(2) provide all the roots. The roots in columns (1) and (3) form only a partial set of solutions. 

The reason for the discrepancy in the set of solutions in (1) and (3) compared to (2) is that the 

solutions of (1) and (3) makes us jump much further ahead to future roots than do the solutions 

of (2). Also, note that (3) simply repeats the principal root every 2�, and never specifies any of 

the other roots. 

 

Therefore, when j/o is irreducible we decide upon the following: for any complex number � =��cos � + � sin �� we define �k/l as ��k��/l, i.e.  

 �k/l = ��k��/l = �k/l !cos !j� + 2/�o & + � sin !j� + 2/�o && . (44) 

Equation (44) will be proved in the next section.  

 

Example 1: From what we have learnt above we can say that, given � = cos 3�/4 + � sin 3�/4, 

evaluating �D/ = �cos 3�/4 + � sin 3�/4�D/  gives 
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�D/  = !cos !7 × 3�4 & + � sin !7 × 3�4  &&�/  , 
 = !cos !7 × 3�4 + 2/�& + � sin !7 × 3�4 + 2/�&&�/  , 
 = cos !21�/4 + 2/�3 & + � sin !21�/4 + 2/�3 & . 

 

Example 2: If � = � we can find �3/  as follows: � = |�| = 1 and � = Arg��� = �/2. Hence  

� = cos �2 + � sin �2  . 
Therefore  

�3/  = :cos �2 + � sin �2;3/  , 
 = !cos !2�2 & + � sin !2�2 &&�/  , 
 = !cos !� + 2/�3 & + � sin !� + 2/�3 && . 

From this we find our roots to be 

n Root 

0 �1 = cos :�3; + � sin :�3; = 12 + � √32  

1 �� = cos��� + � sin��� = −1 

2 �3 = cos !5�3 & + � sin !5�3 & = cos :�3; − � sin :�3; = 12 − � √32  

 

Example 3: To find � /T when � = 1 − �, we first find the modulus and argument of � to be � =
√2 and � = −�/4. Hence  

� /T = �√2� /T :cos �4 − � sin �4; /T , 
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 = �√2� /T !cos !3�4 & − � sin !3�4 &&�/T , 
 = �√2� /T !cos !3�/4 + 2/�8 & − � sin !3�/4 + 2/�8 && . 

The roots are therefore 

n Root 

0 �1 = �√2� /T !cos !3�32& − � sin !3�32&& 

1 �� = �√2� /T !cos !11�32 & − � sin !11�32 && 

2 �3 = �√2� /T !cos !19�32 & − � sin !19�32 && 

3 � = �√2� /T !cos !27�32 & − � sin !27�32 && 

4 �A = �√2� /T !cos !35�32 & − � sin !35�32 && = �√2� /T !cos !29�32 & + � sin !29�32 && 

5 �O = �√2� /T !cos !43�32 & − � sin !43�32 && = �√2� /T !cos !21�32 & + � sin !21�32 && 

6 �\ = �√2� /T !cos !51�32 & − � sin !51�32 && = �√2� /T !cos !13�32 & + � sin !13�32 && 

7 �D = �√2� /T !cos !59�32 & − � sin !59�32 && = �√2� /T !cos !5�32& + � sin !32�32 && 

 

Example 4: To find the sum and product of the first five values of �cos � + � sin ��3/O we 

proceed as follows: Let � = cos � + � sin �. Then  

�3/O = �cos � + � sin ��3/O = cos !2� + 2/�5 & + � sin !2� + 2/�5 & . 
Hence the first five values are 

 

• for / = 0, �1 = cos�2�/5� + � sin�2�/5�; 

• for / = 1, �� = cos�4�/5� + � sin�4�/5�; 
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• for / = 2, �3 = cos�6�/5� + � sin�6�/5� = cos�4�/5� − � sin�4�/5�; 

• for / = 3, � = cos�8�/5� + � sin�8�/5� = cos�2�/5� − � sin�2�/5�; 

• for / = 4, �A = cos�10�/5� + � sin�10�/5� = 1; 

 

Given our previous theory, note that we are not taking the two-fifths roots of � = cos � + � sin �, 

but the fifth roots of the new complex number �` =� �3 = cos 2� + � sin 2�.  

 

Since �3 = cos 2� + � sin 2� = 1, and since we have found the fifth roots of w, we are in fact 

solving the polynomial `O − 1 = 0. By standard algebra we know that the sum of roots of a real 

polynomial 	a= + qa=�� … + 	1 = 0 is given by −q/	. Hence for `O − 1 = 0 we have the sum 

of the roots to be zero , therefore 

�1 + �� + �3 + � + �A = 1 + 2 cos�2�/5� + 2 cos�4�/5� = 0 . 
 

For the product of roots we have  

 Rcos�2�/5� + � sin�2�/5�S × Rcos�4�/5� + � sin�4�/5�S × Rcos�−4�/5� + � sin�−4�/5�S 

 × Rcos�−2�/5� + � sin�−2�/5�S × 1 . 
By the property that multiplication of complex numbers equals addition of their arguments, we 

have  

cos !2�5 + 4�5 + 6�5 + 8�5 + 10�5 & + � sin !2�5 + 4�5 + 6�5 + 8�5 + 10�5 & = cos�6�� = 1 . 
 

Example 5:  

To find the principal value of �1 + cos � + � sin �� /A in −� < � ≤ �, and in � < � ≤ 3�, we first 

have to convert 1 + cos � + � sin � into the correct form so that we can use DeMoivre’s theorem. 

There are (at least) two ways in which we can do this, both of which illustrate certain points 

worth knowing about. So we will go through two different solutions to this problems in order 

to highlight these points. 

 

 Solution 1 

 We can transform 1 + cos � and sin � using standard trig identities. From cos 2� =2 cos3 � − 1 we have 1 + cos � = 2 cos3 �/2, and from sin 2� = 2 sin � cos � we have sin � = 2 sin �/2 cos �/2. Hence  
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1 + cos � + � sin � = 2 cos3 �/2 + 2� sin �/2 cos �/2 ,  

 = 2 cos �/2 �cos �/2 + �. sin �/2� . (*) 

Therefore  

�1 + cos � + � sin �� /A = �2 cos��/2� �cos �/2 + �. sin �/2�� /A , 
 = !2 cos �2& A !cos 3�8 + �. sin 3�8 & . 

 This solution is the principal value of �1 + cos � + � sin �� /A in −� < � ≤ �.  

 

For the case of � < � ≤ 3� we must first shift the period of the trig functions from −� <� ≤ �  to � < � ≤ 3� so that the principal argument now lies within � < � ≤ 3�. This 

means that the argument of our previous solution needs to be shifted along by 2�. In other 

words, we must first be in the correct “principal value” interval before taking roots.  

 

Now, since cos�� + 2/�� = cos �, we therefore have cos��/2 + /�� = cos �/2, and 

equation (*) becomes  

1 + cos � + � sin � = 2 cos��/2 + /�� �cos��/2 + /�� + �. sin��/2 + /��� . 
 The RHS of the above equation is the general form of 1 + cos � + � sin �, and can be used 

to find the principal value in any appropriate interval. For the case of −� < � ≤ � we set / = 0. In our current case we set / = 1 to find the principal value of 1 + cos � + � sin � in � < � ≤ 3�. Hence  

�1 + cos � + � sin �� /A = �2 cos��/2 + �� �cos��/2 + �� + �. sin��/2 + ���� /A , 
 = !2 cos !�2 + �&& A !cos 34 !�2 + �& + �. sin 34 !�2 + �&& , 
 = !−2 cos �2& A !cos 38 �� + 2�� + �. sin 38 �� + 2��& . 

 

 Solution 2 

 In solution 1 we had to be aware of shifting the argument appropriately in order for it to 

lie in the interval we wanted. In this solution we will not need to manually shift the 

argument since this will automatically be taken into account by the alternative way in 

which we solve the problem.  
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 To this end, notice that 1 = cos 0 + � sin 0 for the interval −� < � ≤ �, and we could 

repeat solution 1 with this transformation, resulting in the same answer (left as exercise).  

 In the case of � < � ≤ 3� we set 1 = cos 2� + � sin 2�. Hence, we can alternatively 

transform 1 + cos � + � sin � as follows: 

1 + cos � + � sin � = cos 2� + � sin 2� + cos � + � sin � , 
 = cos 2� + cos � + ��sin 2� + sin �� . 

What we want to do is convert this last expression using the factor formula from the trig 

family of indentities, to obtain 

1 + cos � + � sin � = 2 cos !� + �2& . cos !� − �2& + 2� sin !� + �2& . cos !� − �2&  , 
 from which we can factor out the term 2 cos�� − �/2� to get 

1 + cos � + � sin � = !2 cos !� − �2&& !cos !� + �2& + � sin !� + �2&& . 
 Hence 

�1 + cos � + � sin �� /A = !2 cos !� − �2&& /A !cos !� + �2& + � sin !� + �2&& /A , 
 = !−2 cos �2& A !cos 34 !� + �2& + � sin 34 !� + �2&& , 
 = !−2 cos �2& A !cos 38 �� + 2�� + �. sin 38 �� + 2��& . 

 

 

1.13.4 Deriving DeMoivre’s theorem for irreducible an exponent p/q 

Let us return to the idea of the rooting of positive real numbers. As such, consider a = 8. We 

know that a3/  = 83/ = 4. We also know ths this can be performed in two different ways, both 

of which give the same answer: �8�/ �3  = 23 = 4 or �83��/  = 64�/ = 4. In other words it 

doesn’t matter whether we perform the squaring first, and then the rooting, or vice-versa.  

 

However, having seen in earlier sections that the arithmetic of real numbers does not 

completely carry over to the arithmetic of complex numbers the question we need to ask is, Is 

it true that �k/l = ���/l�k = ��k��/l for a complex number z? This is what we will now address.  
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Here we will prove equation (44) for the case of irreducible p/q, where j, o ∈ ℕ. The logic 

behind this proof is identical to that we have previously used in section 1.13.2 when proving ��/= via Demoivre’s theorem.  

 

So we proceed as follows: Consider a complex number z for which we wish to find the p/qth 

roots. To this end we want to find all roots �7 = �k/l, for / = 0, 1, 2, … , 
 − 1. Our aim is to find 

all distinct roots, before repetition due to periodicity 2/�, and we do this by analysing �k = �7l . 

We therefore say that we want all solutions �7 such that �k = �7l . This then guarantees us 

finding all roots �7. 

 

Therefore, let � = ��cos � + � sin �� be the number we wish to take the p/qth root of. By 

DeMoivre’s theorem we have  

�k/l = �k/l�cos � + � sin ��k/l = �k/l !cos j�o + � sin j�o & . 
The RHS of this equation represents only one value, say �1. So let �1 = e�cos E + � sin E�. Then �k/l = �1 implies �k = �1l , hence  

 �k�cos j� + � sin j�� = el�cos E + � sin E�l = el�cos oE + � sin oE� . [*] 

Comparing Re and Im parts we have �k cos j� = el cos oE and �k sin j� = el sin oE. If we 

square and add these two equations we obtain ��k�3�cos3 j� + sin3 j�� = �el�3�cos3 oE +sin3 oE� implying �el�3 = ��k�3. Hence  

e = √�ks
 . 

where the positive root is taken since R is the modulus of �. 

 

Now, we know that el�cos oE + � sin oE� is only one solution to the roots of �. The other 

solutions are found by accounting for the periodic nature of cos and sin, i.e. cos�oE + 2/�� =cos oE or sin�oE + 2/�� = sin oE where / ∈ ℤ. Hence [*] becomes  

�k�cos j� + � sin j�� = el�cos�oE + 2/�� + � sin�oE + 2/��� , 
implying oE + 2/� = j�, and therefore 

E = j� + 2/�o  . 
for / = 0, ±1, ±2, … (note 2/� for / = 0, ±1, ±2, … is the same as −2/� for / = 0, ∓1, ∓2, …). 
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We are now in a position to define the meaning of the rooting operation �7 = �k/l, / =0, ±1, ±2, …,  to be  

the q distinct qth roots of a complex number �k given by  

(45)  �7 = �k/l = ��k��/l = �k/l !cos !j� + 2/�o & + � sin !j� + 2/�o && , / ∈ ℤ. 
such that �k = �7l , for / = 0, 1, 2, … , o − 1,  

 

i.e. such that any solutions �7, when powered by q, give �k.  

 

1.14 Issues when finding roots of a complex number 

1.14.1 Issue 1: An inconsistency in DeMoivre’s theorem – The rooting operations gives different 

results 

We know that, for real numbers, adding 2 to 3 gives one unique result: 3 + 2 = 5. There is no 

other answer but 5 when we do this operation. The same is true for subtraction, multiplication, 

division, and exponentiation: 

• 3 − 2 = 1, and there is no other answer but 1 when we do this operation; 

• 2 × 3 = 6, and there is no other answer but 6 when we do this operation;  

• 6 ÷ 3 = 2, and there is no other answer but 2 when we do this operation;  

• 33 = 9, and there is no other answer but 9 when we do this operation;  

 

Similarly for complex numbers we have  

• �1 + �� + �3 − 2�� = 4 − �, and there is no other answer but 4 − � when we do this 

operation; 

• �1 + �� − �3 − 2�� = −2 + 3�, and there is no other answer but −2 + 3� when we do this 

operation; 

• �1 + ���3 − 2�� = 3 + �, and there is no other answer but 3 + � when we do this 

operation; 

• �1 + �� ÷ �3 − 2�� = �1 + 5��/13, and there is no other answer but �1 + 5��/13 when we 

do this operation; 

• �1 + ��3 = 2�, and there is no other answer but 2� when we do this operation. 
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Now come things like the square root of positive numbers. For example, √4 = 2. However, this 

is not the only answer to √4 since we also have √4 = −2. The reason for this is that both 2 and 

−2, when squared, give the answer 4. So, the operation of square rooting does not give a unique 

answer.  

 

As we have seen above, this also happens to be the case when taking roots of complex numbers. 

For example, the value of ��/3 when � = 2� is �1 = √2�cos �/4 + � sin �/4� = 1 + �. But we also 

know that �� = √2�cos 5�/4 + � sin 5�/4� = −1 − � is another root of �. So the same operation 

of rooting gives us two different answers implying that DeMoivre’s theorem is not consistent in 

the case of rational powers. This is an important point to note. 

 

Another form of inconsistency in the use of DeMoivre’s theorem has been illustrated previously 

with respect to taking account of the periodicty of solutions during the process of taking roots 

of a complex number. Letting cos � + � sin � be represented by cis �, we have for ��/3 = ��/3 

either �7 = cis���/2 + 2/��/2� or `7 = cis���/2�/2 + 2/��. Illustrating this analysis for ��/3, 

��/  and ��/A, we obtain the results in the table below  

 

uv/w : �1 = cis :�4; , �� = cis !5�4 & , �3 = cis !9�4 & .   

 `1 = cis :�4; , `� = cis !9�4 & .    

      

uv/x : �1 = cis :�6; , �� = cis !5�6 & , �3 = cis !9�4 & , � = cis !13�6 & .  

 `1 = cis :�6; , `� = cis !13�6 & , `3 = cis !25�6 & .   

      

uv/y : �1 = cis :�8; , �1 = cis !5�8 & , �3 = cis !9�8 & , � = cis !13�8 & . �A = cis !17�8 & . 
 `1 = cis :�8; , `� = cis !17�8 & , `3 = cis !33�8 & , `A = cis !49�8 & .  
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By looking at the relevant colour coordinated results we can see that the principal values are 

the same, but that, as we take higher and higher roots, results derived from cis��/
 + 2/�� miss 

out more and more roots compared to those derived from cisR�� + 2/��/
S. 

 

All of this leads us to defining the nth roots of a complex number in the very particular way of  

those complex numbers �7, for / = 0, 1, 2, … , 
 − 1, 

which satisfy ��7�= = �. 
 

Stating the definition in this form says that we are looking for any and all roots of the original 

complex number. We still calculate �7 as ��/= or as ��k��/l, but we do so in a way that gives us 

all posible roots (i.e. by the proper accounting of periodicity). 

 

So, one thing to notice in general is that when extending the domain of numbers from ℝ to ℂ we 

gain the ability to find roots that we can’t find in ℝ, but we lose the consistency in the use of 

exponents. 

 

1.14.2 Issue 2: An inconsistency in DeMoivre’s theorem – The case of reducible p/q 

Let us return to the idea of the rooting of positive real numbers. As such, consider a = 4. We 

know that the positive root is a�/3 = 4�/3 = 2. We also know that a3/A = 43/A = 4 /\ = 2. In 

other words it doesn’t matter whether our fractional exponent is in its lowest terms or not.  

 

However, having seen in earlier sections that the arithmetic of real numbers does not 

completely carry over to the arithmetic of complex numbers the question we need to ask is, Is 

it true that �k/l = �3k/3l = ⋯ = �7k/7l for a complex number z? This is what we will now 

address.  

 

Therefore, consider evaluating 13/3. This can be  

As another example, consider finding the square root of � = 1 + �. Doing so gives  

��/3 = �√2��/3�cos��/4 + 2/�� + � sin��/4 + 2/����/3 , 
 = �√2��/3 !cos !�/4 + 2/�2 & + � sin !�/4 + 2/�2 && . 
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Now consider finding the fourth roots of ` = 2�. Doing so gives  

`�/A = �2��/A�cos��/2 + 2/�� + � sin��/2 + 2/����/A , 
 = �2��/A !cos !�/2 + 2/�4 & + � sin !�/2 + 2/�4 && . 

The individual roots of ` and � are then as follows: 

k }n �n 

0 �2��/A�cos �/8 + � sin �/8� �√2��/3�cos �/8 + � sin �/8� 

1 �2��/A�cos 5�/8 + � sin 5�/8� �√2��/3�cos 9�/8 + � sin 9�/8� 

2 �2��/A�cos 9�/8 + � sin 9�/8�  

3 �2��/A�cos 13�/8 + � sin 13�/8�  

 

Now note that ̀ = �3, so what we have done in finding the fourth roots of ` is to find the fourth 

roots of �3, i.e. ��3��/A. We know that, in terms of real number arithmetic, 2/4 = ½ . But we can 

now see from the table above that, as a complete solution, `�/A = ��3��/A ≠ ��/3. Hence �3/A ≠��/3, and in general we have that if p and q are not coprime (where j, o ∈ ℕ) then ��k��/l ≠�k/l. 

  

Therefore, for any complex number � = ��cos � + � sin �� we decide upon the following: when j/o is in reducible form we firstly apply Demoivre’s theorem on the power j, then we take 

account of the periodicity of the trig functions, then we take the o~� roots. In other words,  

�k/l = �k/lMcos � + � sin �Nk/l , 
 = �k/lMcos j� + � sin j�N�/l , 

 

this latter equation being a new complex number ` whose argument is E = j�, after which we 

apply DeMoivre’s theorem again to find the qth roots of `:  

`�/l = ��k��/l = �k/lMcos�E + 2/�� + � sin�E + 2/��N�/l , 
 = �k/l Pcos !Eo + 2/�o & + � sin !Eo + 2/�o &Q . 
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which is equivalent to  

 �k/l = �k/l Pcos !j�o + 2/�o & + � sin !j�o + 2/�o &Q . (46) 

 

(remember that, since � is a real number, ��k��/l = �k/l�. Note that the interval for E is −� <E ≤ �, implyings −� < j� ≤ �. So the correct interval for principal arguments with respect to � is −�/j < � ≤ �/j. 

 

After all this work we can now define the p/qth roots of a complex number of �k/l to be the qth 

roots of �k, this being  

those complex numbers �7, for / = 0, 1, 2, … , 
 − 1, 

which satisfy ��7�l = �k. 

 

Exercise: If � = 2 + 2� and ` = �  find `�/3 and � /\. 

  

 

Normally when we find roots of a complex number z we are find these roots with respect to z 

itself. However, in the example above we end up finding the fourth roots of z with respect to �3. 

So in (46) we are finding the qth roots of z with respect to �k, not with respect to the original 

complex number z.  

 

1.14.3 Issue 3: The non-distributive nature of taking roots of a complex number 

Here we will adress in more detail what is going on when we “prove” of 1 = −1, as was 

illustrated in section 1.2. Before getting to this we will look at the operation opposite to rooting, 

namely powering. 

 

Therefore, consider � = 2. This number lies on the positive Re axis. In polar form this number 

is � = 2�cos 0 + � sin 0� . 
Squaring this value gives  �3 = 4�cos 0 + � sin 0�3 . 
Since sin and cos are periodic function we can write this number as 

�3 = 4�cos 2/� + � sin 2/��3 , 
 

for / = 0, ±1, ±2, …   
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Applying DeMoivre’s theorem gives 

�3 = 4�cos 4/� + � sin 4/�� . 
 

What this shows is that, even though we have multiple answers to �3 (actually, an infinite 

number of answers) they are all the same value: 

… = 4 

� = 4�cos�−8�� + � sin�−8��� = 4 

� = 4�cos�−4�� + � sin�−4��� = 4 

� = 4�cos 0 + � sin 0� = 4 

� = 4�cos�4�� + � sin�4��� = 4 

� = 4�cos�8�� + � sin�8��� = 4 

… = 4 

 

So it doesn’t matter which / value we choose in 4�cos 4/� + � sin 4/�� since we will always 

obtain the same result. 

But if we now consider the number � = 4, whose polar form is � = 4�cos 0 + � sin 0�, and we 

wish to take the square root of � we have, as usual,  

��/3 = 2�cos 2/� + � sin 2/���/3 = 2�cos /� + � sin /�� 

for / = 0, ±1, ±2, … in this case we have the following values  

… = 2 

� = 2�cos�−�� + � sin�−��� = −2 

� = 2�cos�0� + � sin�0�� = 2 

� = w���� � + u ��� �� = −w 

� = 2�cos�2�� + � sin�2��� = 2 

� = 2�cos�3�� + � sin�3��� = −2 

… = 2 

 

where the value in bold is the principal value. So in the case of rooting it does indeed matter 

which / value we choose in 2�cos 4/� + � sin 4/�� since we get different answers for different 

values of /.  
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In summary we therefore have  

• a real number, when raised to a positive integer power, gives multiple answers which are 

all the same, and therefore always lie on the positive Re axis, and at the same location;  

• a real number, when rooted, gives multiple answers which are different, and which are 

therefore distributed (by varying angles) to different locations across the complex plane.  

 

This leads us to having to ask the following: when rooting, which root are we actually finding, 

and which root do we want to refer to? 

 

Let us now turn to the “proof” of 1 = −1 of section 1.2.2. One step in this “proof” was 

U�−1��−1� = √−1 × √−1. Calculating U�−1��−1� we have  

1 = U�−1��−1� = R�cos � + � sin ���cos � + � sin ��S�/3, 
 = �cos 2� + � sin 2���/3 , 
 = �cos�2� + 2/�� + � sin�2� + 2/����/3 , 
 = �cos�� + /�� + � sin�� + /��� , 
 = −1 for / = 0. 

 = +1 for / = 1. 

Calculating √−1 × √−1 we have 

U�−1� × U�−1� = �cos � + � sin ���/3�cos � + � sin ���/3 , 
 

= �cos�� + 2/�� + � sin�� + 2/����/3 × �cos�� + 2/�� + � sin�� + 2/����/3 

 = :cos :�2 + /�; + � sin :�2 + /�;; :cos :�2 + /�; + � sin :�2 + /�;; , 
 = cos�� + 2/�� + � sin�� + 2/�� , 
 = −1 for / = 0, 
 = −1 for / = 1. 
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So, in the first solution, where we did not distribute the root, we get two answers and in the 

second solution, where we did distribute the root, we only get one answer. So there is an 

inconsistency between the the number of solutions produced, and it is for this reason that we 

cannot distribute the roots across negative numbers (notice that the inconsistency arises 

because, in solution 1, we have accounted for the periodicity 2/� only once, whereas in solution 

2 we have accounted for the periodicity 2/� twice, once for each complex number). 

 

Now, although the answer to solution 2 is correct, solution 2 produces an incomplete set of 

answers. And it is the aim of maths to solve problems in such as way as to produce all possible 

answers to a problem. Many hundreds of years of the evolution of maths lead to a period from 

the mid 1800s to the beginning of the 1900s (and giving rise to the discipline of real analysis) 

which culminated in a way of defining answers to problems as  the set of all possible solutions, 

not simply the set of some possible answers. Solution 1 above produces the set of all possible 

solutions. 

 

Therefore, the question is, How do we define the rooting problem so that we do not end up with 

the issue above? Well, we do this by defining it as a squaring problem. To see why, notice that 

the solutions ±1 can be seen to be the result of solving the square root problem � =
U�−1��−1�. However, we can restate this problem as that of wanting to solve the squaring 

problem �3 = 1. What this means that we want square roots not as answers to solving the 

square root problem (which may or may not produce a complete set of answers depending on 

how we take the square root), but as answers which satisfy the squaring problem a3 = 1. And 

we do this by saying  

U�−1��−1� = ±1 because :U�−1��−1�;3 = �±1�3, i.e. 1 = 1. 

I.e. we have to define the taking of roots as that process which gives us all solution to the power 

problem. Therefore, in general we don’t just define rooting as �7 = ����/3 but as �7 = ����/3 

such that �73 = �, i.e. as all solution �7 which can be squared to give �. 

 

Such an approach to solving the rooting problem then forces us to look for a method of rooting 

which produces the maximal numbers of roots which satisfy a3 = 1. It also means we no longer 

need to worry about which of the two answers to choose. We no longer consider √−1 = � 

and/or √−1 = −�. Instead we consider �√−1�3 = �3 = −1, i.e. an equation for which it is clear 

that there is only one answer, namely the value −1.  
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Having then found all the necessary roots to U�−1��−1� how are we to sort out the problem of 1 = −1? Well, the short answer is that we need to keep mathematics consistent, so given two 

answers to our roots we choose that answer which keeps mathematics consistent. In other 

words, between a choice of +1 and −1 as our answer to U�−1��−1� we clearly have to choose 

+1 in order to have 1 = U�−1��−1� = +1. Similarly, the only possible way −1 = U�−1��−1� 

is if we choose the answer to U�−1��−1� as being −1. Then we can say −1 = U�−1��−1� = −1 

 

Hence, in general, given two complex numbers �� and �3, and a positive integer n, we have 

����3�= = ��=. �3= but ����3��/= ≠ ���/=. �3�/=
 

 

One thing to notice in general is that when extending the domain of numbers from ℝ to ℂ we 

gain the ability to operate on the roots of negative numbers, but we lose the flexibility of 

distributing roots across multiplication.  

 

As an exercise try creating a proof that 1 = 2 by incorrectly distributing the square root (hint: 

start with �−1�/1 = 1/�−1� and later on add 3/�2�� to both sides of the equation). 

 

1.15 On the roots of unity of a complex number 

We are all familiar with the fact that if a3 = 1 then a = ±1. But what if a = 1? Since this is a 

cubic we expect three roots, but it seems that only a = 1 satisfies this equation. What about the 

roots of aA = 1? We know that a = ±1 satisfy this equation, but since aA = 1 is a quartic 

equation we should have another two roots. Where are they?  

 

More generally, if a= = 1 we expect n roots as solutions, but it seems we can find only a 

maximum of two roots (a = 1 or a = ±1), depending on whether n is even or odd. The 

resolution to this apparent problem is found in complex analysis. The idea of complex numbers 

can now be used to find the roots of unity, i.e. the roots of the number 1.  

 

1.15.1 The structure of the roots of unity 

Let us first start our study by analysing the cube roots of a = 1 . Since this implies a − 1 = 0 

we can factorise this as 

a − 1 = �a − 1��a3 + a + 1� = 0 . 
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So one root is K1 = 1. By the quadratic fomula we get the following roots for a3 � a � 1  0: 

K�  �1 � �√32  and K3  �1 � �√32  . 
Therefore a � 1  0 can be factorised as 

a � 1  �a � 1��a � Z�12 � � √32 [��a � Z�12 � � √32 [� . 
We can plot these on an Argand diagram as illustrated below. Notice that the roots lie on the 

circumference of a unit circle, and also form the vertices of triangle: 

 

Repeating the analysis for the fourth roots of aA  1 we obtain  

aA � 1  �a � 1��a � 1��a3 � 1�  0 , 
giving roots roots (taken in order) of K1  1, K�  �, K3  �1 and K  ��.  Hence aA � 1  0 

can be factorised as 

aA � 1  �a � 1��a � 1��a � ���a � ����� . 
Again we see that the fourth roots of unity all lie on a unit circle, with the roots now forming 

the vertices of a square: 
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Similar analysis on aO  1, a\  1, etc. will produce roots which also lie on a unit circle and 

which form the vertices of a pentagon, hexagon, etc. respectively. It is left as an exercise for you 

to find the roots and illustrate these on an Argand diagram. The Argand diagram below 

illustrates the roots of aO  1, a\  1, aD  1, and aT  1. It is left as an exercise for you to 

identify the relevant roots in the diagrams below.  

 

   

 The roots of aO  1     The roots of a\  1 
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 The roots of aD  1     The roots of aT  1 

 

In order to find the equation of the roots of unity in the general case of �=  1, where 
 ∈ ℕ, we 

use the polar form of z and DeMoivre’s theorem: let �  cos � � � sin �. Then 1  cos 0 � � sin 0, 

hence  

�  �cos 0 � � sin 0�= , 
  �cos 2/� � � sin 2/��= . 

 

Therefore the k roots of z are given by  

 �7  cos !2/�
 & � � sin !2/�
 & , (47) 

 

for /  0, 1, 2, 3, … , 
 � 1. Knowing any of the above equations for the sums of roots allows us 

to simplify expressions involving roots of unity. 

 

Furthermore, if �=  � for some integer m, then �=  � p 1 implying �  √�f p 1�/= 
√�f cos�2/�/
� � � sin�2/�/
�. For example, if �O  13 then we have �  √13L cos�2/�/
� �� sin�2/�/
� where /  0, 1, 2, 3, 4. This gives the following separate roots: 

• For /  0, �1  √13L cos�0� � � sin�0�  √13L
 ; 

• For /  1, ��  √13L cos�2�/5� � � sin�2�/5� ; 

• For /  2, �3  √13L cos�4�/5� � � sin�4�/5� ; 

• For /  3, �  √13L cos�6�/5� � � sin�6�/5�  √13L cos�4�/5� � � sin�4�/5� ; 

• For /  4, �A  √13L cos�8�/5� � � sin�8�/5�  √13L cos�2�/5� � � sin�2�/5� ; 
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Returning to �=  1 we can ask, What positive integers n give only real solutions to this 

equation? Well, we know from (4747) that �7 will be real only if sin�2/�/
� = 0. Hence we have  

2/�
 = �� , 
for �  0, ±1, ±2, … Hence we need 
  2//�. Then  

• if �  1, sin�2/�/
� = sin�2/�/�2/�� = sin 2�/2 = 0 for all k; 

• if �  2, sin�2/�/
� = sin�2/�/�//2�� = sin 4�/2 = 0 for all k; 

• if �  3, 4, 5, …, sin�2/�/
� = sin�2/�/�2//��� = 0 = sin 2��/2 = 0 for all k;  

etc. hence 
  2//� guarantees real solutions to �=  1. 

 

The above example was based on the study of roots of unity. Can we generalise the above to 

apply to any complex number �  a � �b? Yes. In this case we are looking for the condition on 

n such that z only has real solution. Hence  

�  a � �b  ��cos � + � sin �� , 
where �  |�| and �  arg���. Then  

��/= = ��/=�cos � + � sin ���/= = ��/= !cos !� + 2/�
 & + � sin !� + 2/�
 && . 
Here we need sin��/
 + 2/�/
� = 0 for there to be only real solution to z, i.e.  


  � � 2/���  , 
for �  0, ±1, ±2, …  

 

Below is a diagam which illustrates the first nine roots of unity: 

 

first root square roots cube roots
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fourth roots fifth roots sixth roots
 

 

seventh roots eighth roots nineth roots
 

 

1.15.2 Finding π from a study of roots of unity 

The following is taken from “Roots of unity revisited”, Brian Denton, Mathematical Gazette, Vol 

64, issue 447 (Mar 1985), pp17-20. Consider the polygons generated by the roots of unity � 1, �A  1, �O  1 and �\  1 as illsutrated below: 

 

  

 �  1 �A  1 
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 �O  1 �\  1 

 

A question we can ask is, What happens to the area of the polygon as the number of sides n of 

the polygon approaches infinity?  

 

Another way of putting it is, What happens to the area of the polygon as the number n of 

triangles that form the polygon approaches infinity? Our aim will be to see if the sequence of 

values of these areas converges to any particular number. 

 

To start with we need to find a expression for the area of a polygon, this expression being in a 

form suitable to taking the limit as 
 → ∞. We do this by considering one trinagle of the polygon. 

Here we see that each triangle within any polygon is isosceles, with internal angle �  2�/
.  

 

So, any one triangle can be generally represented as illustrated below, where b is the base 

length of the triangle, and h is the perpendicular height to the base of the triangle. 

 

Then the area ��  of a general triangle is given by ½q p ℎ. 

Our aim is to find an expression for the area in terms of 

trig functions. Hence   

sin �2  q2 implying q  2 sin �2 

and ℎ  cos �2 .  
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So, with �  2�/
, we have  

��   
12 :2 sin �2; :cos �2; , 

  sin :�
; cos :�
; , 
  

12 sin 2�
  . 
 

Since there are n triangles in a polygon the totlal area of the polygon is  

�  
��  
2 sin 2�
  . 
This gives us the following areas for the polygons formed by the respective roots of unity: 

 

Root of unity equation: ��  v Area  

�  1 3√3/4 ≈ 1.299 

�A  1 2 

�O  1 
58 �2√5 + 10 ≈ 2.378 

�\  1 3√3/2 ≈ 2.598 

 

As n increases we obtain the following sequence of values for the area of the polygon 

n 10 … 30 … 50 … 100 … 150 … 1643 

Area 2.93893 … 3.11868 … 3.13333 … 3.13953 … 3.14067 … 3.14159 

 

So it looks as if the area of the polygon approaches the value � as 
 → ∞. This should make 

sense since, as n increases, so the perimeter of the polygon approaches the perimeter of the 

circle. The area of a circle of radius 1 is �, so the area of the polygon as 
 → ∞ should also be �. 

And we can show this as follows: 

�  
2 sin 2�
 = sin�2�/
�2/
 = � sin�2�/
�2�/
  . 
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Taking the limit of the LHS as 
 → ∞ we obtain  

�  � lim=→H
sin�2�/
�2�/
 = � . 

 

1.15.3 Sums of roots of unity 

Returning to the cube roots of unity, we have roots of 1, and � �3± � √ 3 . Now let K�  � �3� � √ 3  

and K3  � �3 � � √ 3 . By standard algebra we know that, given roots ��, �3, … , �=, the sum of 

roots of a real polynomial 	a= � qa=�� … + 	1 = 0 is given by �� � �3 �⋯� �=  �q/	. 

Hence, for � � 1 = 0 we have 1 + K� + K3 = 0.  

 

Now notice that K�3  K3. So, letting K�  K we have  

1 + K + K3 = 0,  
where K  1 and K ≠ 1. 

 

For �A � 1 = 0 we have roots of ±1 and ±�. Then letting K1  1, K�  �, K3  �1, and K  �� 
we have the sum of the roots to be 1 + � − 1 − � = 0. Now notice that K�3  �1 and K�  �� K3, so, letting K�  K we have 1 + K + K3 + K = 0 , 
where KA  1 and K ≠ 1. 

 

Exercise: Show that, for aO � 1 = 0 the sum of the roots are 1 + K + K3 + K + KA = 0 where KO  1 and K ≠ 1. 

 

A pattern seems to be developing, and it is true in general that if �= � 1 = 0, for 
 ∈ ℕ, then the 

sum of the roots can be expressed as  

1 + K + K3 + K + ⋯ + K=�� = 0 , 
where K=  1 and K ≠ 1. To show this note that K=  1 ⟹ K= � 1 = 0. Hence  

K= � 1 = �K − 1��K=�� + K=�3 + ⋯ + K + K3 + K + 1� = 0 . 
Either K � 1 = 0 ⟹ K = 1, or K=�� � K=�3 �⋯�K � K3 � K � 1 = 0 where, for this factor, K ≠ 1.  
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In general we therefore have the following for �=  1: 

 

n  Sum of roots 

2  1 + K = 0 

3  1 + K + K3 = 0 

4  1 + K + K3 + K = 0 

5  1 + K + K3 + K + KA = 0 

6  1 + K + K3 + K + KA + KO = 0 

7  1 + K + K3 + K + KA + KO + K\ = 0 

 

etc., with K=  1 for 
  2, 3, 4, 5, 6, 7 respectively.  

 

1.15.4 The cyclic nature of roots of unity 

The roots of unity have what can be called a cyclic nature. In other words, the values of the roots 

of unity repeat every K=. For example, if �  1 we know 

1 + K + K3 = 0 , and K  1 . 
(1)  (2) 

Notice that the root K  in (2) already appears in (1). Multiplying K  by K, K3, and K  we have KA  K. K = K and KO  K3. K = K3 and K\  K . K = 1. Continually multiplying by K, K3 

and K  will produce repetition of K, K3 and K  1. So we have 

1 + K + K3 = 0 , 
K � KA � KO  0 , 
K\ � KD � KT  0 , 

etc. Similarly we have  K� � K�3 � K��  0 , 
since we can factorise K�  from this to get K� �1 + K + K3� = `� �0� = 0. This situation is 

represented by the diagrams below. 
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1

   

In general this means that, given �=  1 is satisfied by the n distinct roots 1, K, K3, … , K=��, so 

the equation is also satisfied by K=, K=?�, … , K3=�� and K3=, K3=?�, … , K =��, etc.  

 

In tabular form we have the following multiplication table for the cube roots of unity and the 

fourth roots of unity. Similar tables can be developed for higher roots of unity. 

Multiplication table for �  1 

p ��w ��v v 

��w K3 1 K 

��v 1 K K3 

v K K3 1 
 

p v � �w 

v 1 K K3 

� K K3 1 

�w K3 1 K 
 

 

 

Multiplication table for �A  1 

p ��x ��w ��v v 

��x K3 KA 1 K 

��w KA 1 K K3 

��v 1 K K3 K  

v K K3 K  1 
 

p v � �w �x 

v 1 K K3 K  

� K K3 K  1 

�w K3 K  1 K 

�x K  1 K K3 
 

 

Example 1: Suppose that K is a root of unity of �=  1. We can show that |K|  1 as follows: 

since K is a root of unity we have K=  1. Let us take the modulus: |K=|  |1| = 1. By the 

property of modulus |K=|  |K|= we obtain |K|=  1. Hence |K|  1�/= = 1.  
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Example 2: Suppose that K is a root of unity of �=  1. We can show that K∗  K�� as follows: 

since K��  1/K we have 

K∗  1K = 1K . K∗K∗ = K∗|K|3 , 
where we have use the general property �. �∗ = |�|3. Therefore, K∗  K∗/|K|3 implies |K|3  1 

which we know is true. Hence K∗  K��, or K∗K  1. 

 

Another way to show this is as follows: K∗  K�� implies K∗K  1. Taking the modulus of both 

sides we obtain |K∗K|  |1| ⟹ |K∗||K| = 1 ⟹ |K∗| = 1, since |K|  1 by example 1.  

 

Now, you might think that we also know that |K∗|  1, hence we have 1 = 1 as our final 

solution, which is obviously true. Hence we have answered the question. But we can’t do this. 

We actually have to show |K∗|  1 formally by using whatever prior properties of complex 

numbers we know. This we can do by taking the conjugate of both sides.  

 

Hence |K∗|∗  1∗ = 1. Again by the property that |�∗|∗  � we have |K∗|∗  |K|  1 which we 

know is true. Hence we have shown that K∗  K��. 

 

Example 3: If K is a 3rd root of unity, where K ≠ 1, then we can simplify �K3 � 1��3K3 + 2K� 

as follows: we know that i) 1 + K + K3 = 0, and ii) K  1. Therefore, by i) �K  K3 � 1 we 

have  �K3 � 1��3K3 + 2K� = �−K��3K3 + 2K� . 
 

Splitting 3K3 + 2K into combination of i) we have   

�K3 � 1��3K3 + 2K� = �−K��K3 + K + K3 + K + K3� . 
Since K3 � K  �1 we obtain 

�K3 � 1��3K3 + 2K�  ��K���2 + K3� , 
  2K − K  , 
  2K − 1 , 

since K  1. Alternatively, we could have expanded the original expression to get 

�K3 � 1��3K3 + 2K�  3KA + 2K + 3K3 + 2K , 
  3K + 2K + 3K3 + 2K , 

since KA  K. K = K by the fact that K  1.   
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Hence  

�K3 � 1��3K3 + 2K�  2 + 3K3 + 5K , 
  2 + 3�−1 − K� + 5K , 
  2K − 1 . 

 

Example 4: Again, if K is a 3rd root of unity, where K ≠ 1, then �K � 1��K\�� + K∗� can be 

simplified as follows:  

�K � 1��K\�� + K∗�  �K � 1��K. K\�1 + K∗� , 
  �K � 1��K. �K �3 1 + K∗� , 
  �K � 1��K + K��� , 

where, from previous work, we have K∗  K��. Expanding the RHS of this last expression, and 

simplifying, we have 

�K � 1��K\�� + K∗�  K3 � 1 − K − K�� , 
  �K � K � K�� , 
  �2K − K��. K  , 
  �2K − K3 , 
  1 − K . 

 

Example 5: Again, if K is a 3rd root of unity, where K ≠ 1, then ��4K�T − 4K�D��−7K�\ +2K�3� can be simplified by knowing that K  and positive integer powers of K  equals 1. 

Therefore K�T  K�T. 1 = K�T�K � = K�T. K� = K, and similarly K�D  K3, K�\  K  1, 

and K�3  K.  

 

Hence ��4K�T − 4K�D��−7K�\ + 2K�3�  ��4K − 4K3��−7 + 2K� , 
  28K + 20K3 − 8 , 
  8K − 28 . 

 

where this last expression was obtained using K3  �1 − K in the equation previous to it. 
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Example 6: Again, if K is a 3rd root of unity, where K ≠ 1, then ��7K�A�∗ � 8K ��KT − �3K�\�∗� 

can be simplified in the same way as in the previous example, and also by knowing that K�� K∗. Therefore �7K�A�∗  7KA and �3K�\�∗ = 3K\. Hence  

��7K�A�∗ � 8K ��KT − �3K�\�∗�  �7KA � 8K ��KT − 3K\� , 
  �7K K � 8K ���K �3K3 − 3�K �3� , 
  �7K � 8��K3 − 3� , 
  7K � 21K + 8K3 − 24 , 
  7 � 21K + 8�−1 − K� − 24 , 
  �25 − 29K . 

 

Example 7: Again, if K is a 3rd root of unity, where K ≠ 1, then to simplify the expression �3K + 1�/�2K − 1� we first take the conjugate of the denominator: 

�3K + 1��2K − 1�  
�3K + 1��2K − 1� × �2K∗ − 1��2K∗ − 1� , 

  
6KK∗ − 3K + 2K∗ − 14KK∗ − 2K − 2K∗ + 1 . 

 

Simplifying, and using K∗  1/K (see example 2), we obtain 

�3K + 1��2K − 1�  
5 − 3K + 2/K5 − 2K − 2/K , 

  
5 − 3K + 2K35 − 2K − 2K3 , 

  
5 − 3K + 2�−1 − K�5 − 2�K + K3�  , 

  
5 − 3K − 2 − 2K5 − 2�−1�  , 

  
3 − 5K7  . 
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Example 8: The roots of �=  1, where 
 ∈ ℕ, can be found easily in polar form as follows:  

�  1�/= , 

  �cos 0 + � sin 0��/= , 
  �cos 2/� + � sin 2/���/= , 

implying  

�7  cos !2/�
 & + � sin !2/�
 & . 
 

Example 9: Suppose we want to find the roots of a\  1 which do not satisfy a3 � a � 1 = 0, 

where a ≠ 1. In order to use complex analysis we first recast the question as a complex 

numbers questions, i.e. we want to find those roots of �\  1 which do not satisfy K3 � K � 1 =0, where K ≠ 1. Then, by equation (4747) of section 1.15.1 we have  

�7  cos !2/�6 & + � sin !2/�6 & , 
for /  0, 1, 2, 3, 4, 5. Hence 

• For /  0, �1  cos�0� + � sin�0� = 1; 

• For /  1, ��  cos�2�/6� + � sin�2�/6�; 

• For /  2, �3  cos�4�/6� + � sin�4�/6�; 

• For /  3, �  cos�6�/6� + � sin�6�/6� = −1; 

• For /  4, �A  cos�8�/6� + � sin�8�/6� = cos�4�/6� − � sin�4�/6�; 

• For /  5, �O  cos�10�/6� + � sin�10�/6� = cos�2�/6� − � sin�2�/6�; 

Letting K  �3 notice that �A  K3. These two roots satisfy 1 + K + K3 = 0. However, by testing 

the remaining roots we see that �1, ��, � , and �O do not satisfy this equation.  

 

Another way of solving this problem, without resorting to complex analysis, is as follows: notice 

that the equation a3 � a � 1 = 0 represents the sum of the cube roots of unity (where a ≠ 1�. 

Therefore consider a\  1 as a type a cubic equation, specifically �a �3 � 13 = 0. Hence 

�a �3 � 13 = �a + 1��a − 1� = 0 . 
Therefore a � 1 = 0 and/or a � 1 = 0, from which we obtain the following: 

• for a � 1 = 0 we have a � 1 = �a − 1��a3 + a + 1� = 0, giving us roots a  1 and a 
� �3± �3 �√3 ; 



195 

 

• for a � 1 = 0 we have a � 1 = �a + 1��a3 − a + 1� = 0, giving us roots a  �1 and 

a  �3± �3 �√3 . 

Hence, the roots which does not satisfy the sum 1 + a + a3 = 0 are a  1, −1, and 
�3± �3 �√3 . 

Exercise: Which roots of a�1  1 make aA � a � a3 � a � 1 = 0? 

 

Example 10: If K is a root of unity of �=  1 simplify  

1 + K + 2K3 + 3K + ⋯ + �
 − 1�K=�� . 

Solution: Let us try a few cases first to see if we can spot a pattern: 


  3: 1 + K + 2K3 = 1 + K + K3 + K3  K3 


  4: 1 + K + 2K3 + 3K = 1 + K + K3 + K + K3 + 2K   K3 � 2K  


  5: 

 

1 + K + 2K3 + 3K + 4KA = 1 + K + K3 + K + KA �K3 � 2K + 3KA 

 

 

  

 

 K3 � 2K + 3KA 

So, in general, it looks like we have  

1 + K + 2K3 + 3K + ⋯ + �
 − 1�K=�� = K3 + 2K + 3KA + ⋯ + �
 − 2�K=�� . 
It is left as an exercise to proce this by induction.  

 

1.15.5 More complicated examples 

Example 1: Consider wanting to solve �a � 2�= + a= = 0 when 
  2. We can do this using 

standard algebra: a3 � 4a + 4 + a3 = 0 implying 2a3 + 4a + 4 = 0, from which the quadratic 

formula gives roots a  �1 ± � via the quadratic formula.  

 

But suppose we now want to solve �a � 2�= + a= = 0 for higher powers. How are we going to 

deal with the case of 
  6 or 
  11 or some other value? Well, the efficient way is to recast 

the equation as a complex valued equation, which then allows us to use all our complex analysis 

theory. In the case of 
  6 we write �� � 2�\ + �\ = 0.  
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Hence  

 
�� � 2�\�\   −1 , 

⟹ 
� � 2�   ��1��/\ , 

⟹ 1 + 2�  �cos�� + 2/�� + � sin�� + 2/����/\ , 
   cos !� + 2/�6 & + � sin !� + 2/�6 & , 

for /  0, 1, 2, 3, 4, 5. Evaluating this last equation for each k we obtain 

• for /  0 we have 1 + 2/� = cos��/6� + � sin��/6� implying 

2� = −1 + √32 + �2  , 
from which z can be found (left as an exercise); 

• for /  1 we have 1 + 2/� = cos�3�/6� + � sin�3�/6� implying  

2� = −1 + �  , 
from which z can be found (left as an exercise); 

• for /  2 we have 1 + 2/� = cos�5�/6� + � sin�5�/6� implying 

2� = −1 − √32 + �2  , 
from which z can be found (left as an exercise); 

• for /  3 we have 1 + 2/� = cos�7�/6� + � sin�7�/6� implying 

2� = −1 − √32 − �2  , 
from which z can be found (left as an exercise); 

• for /  4 we have 1 + 2/� = cos�9�/6� + � sin�9�/6� implying 

2� = −1 − � , 
from which z can be found (left as an exercise);  
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• for /  5 we have 1 + 2/� = cos�11�/6� + � sin�11�/6� implying 

2� = −1 + √32 − �2 , 
from which z can be found (left as an exercise). 

 

Example 2: To solve the equation  

�a ���= � a=  0 , 
where �, 
 ∈ ℝ, we would proceed as follows: convert the equation into a complex number 

equation, i.e. �� � ��= � �=  0. Then  

 �� � ��= � �=  0 , 

⟹ 
�� � ��=�=   1 , 

∴ � � �  �. 1�/= , 
   � !cos 2/�
 + � sin 2/�
 & . 

Where /  0, 1, 2, … , 
 − 1. Hence  

� !1 − cos 2/�
 − � sin 2/�
 & = � . 
Using the trig identity cos 2� = 1 − 2 sin3 � we have 

� !2 sin3 /�
 − � sin 2/�
 & = � , 
and using sin 2� = 2 sin � cos � we now have 

 � !2 sin3 /�
 − 2� sin /�
 cos /�
 &  � , 
⟹ 2�. sin /�
 !sin /�
 − � cos /�
 &  � . 

Solving for a means we will have to divide by the bracketed term. This will have the same effect 

as multiplying both sides by the conjugate of the bracketed term. Doing so, and simplifying, 

gives us 

2�. sin /�
 = � !sin /�
 + � cos /�
 & , 
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after which we can now divide through to get 

�  �2 !1 + � cot /�
 & , 
for /  0, 1, 2, … , 
 − 1. Now things become tricky: if / → 0, � → ∞. This might seem to not be 

a valid answer. However, in more advanced complex analysis theory � → ∞ is a valid answer. 

The reason for this is related to something called Riemann sphere and stereographic projection. 

Since this takes us way beyond the scope of these notes we won’t discuss it here. This is just to 

note that /  0 is a valid parameter to use in the above result. 

 

Exercises: Solve the following:  

1) 
�1 + a�=�1 − a�= = 1 , Answer: a  � tan :7�= ;, /  0, 1, 2, … , 
 − 1 

2) �a � ��\ � �a � ��\  0 , Answer: a  cot �37�����3  , /  0, 1, 2, 3, 4, 5 

3) �1 − �a�= + ��1 + �a�= = 0 , Answer: a  tan �A7?���A=  , /  0, 1, 2, … , 
 − 1 

 

Example 3: Are there any numbers whch satisfy a=  a, apart from 0 and 1? Yes. To see this 

convert the equation as a complex numbers equation, �=  �. Then �=/� = �=�� = 1 is a roots 

of unity equation. Hence we have  

K7  cos ! 2�/
 − 1& + � sin ! 2�/
 − 1& , 
for /  0, 1, 2, . . , 
 − 2. 

 

Example 4: If K is a complex eighth root of unity we can show that K � KD is real. To do this 

we will not do any algebra on  the relation 1 + K + K3 + ⋯ + K\ = 0. Instead we go straight to 

DeMoivre’s theorem. Therefore, �T  1 implies �  1�/T. Hence we have  

�  cos !2/�8 & + � sin !2/�8 & . 
So one root is  K  cos !2/�8 & + � sin !2/�8 & , 
and another root is KD  cos�14/�/8� + � sin�14/�/8� which in principal argument form is  

KD  cos !2/�8 & − � sin !2/�8 & . 
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Hence  

K � KD  cos !2/�8 & + � sin !2/�8 & + cos !2/�8 & − � sin !2/�8 & , 
implying 

K � KD  cos !2/�8 & 

which is real. 

Exercise: What can you say about K3 � K\, K � KO, 2KA, and K � KD, K3 � K\, K − KO? 

 

1.15.6 Products of roots of unity 

Just as there is a pattern for the sums of roots of unity, so there is now for the product of roots 

of unity. Both of these patterns are summarised in the table below, where “ROU” stands for 

“Roots of Unity” and where I have used the “cis” notation for brevity:  

 

ROU 

equation ��  v 

Roots of unity: �n Sum and product of ROU 

�3  1 

K1  cis 0 

K�  cis � 
 

Sum: K1 � K�  0 

Product: K1K�  �1 
 

�  1 

K1  cis 0 

K�  cis 2�3  

K�  cis −2�3  

 

Sum: K1 � K� � K3  0 

Product: K1K�K3  1 
 

�A  1 

K1  cis 0 

K�  cis �2 

K3  cis � 

K  cos −�2  

 

Sum: K1 � K� � K3 � K  0 

Product: K1K�K3K  �1 
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�O  1 

K1  cis 0 

K�  cis 2�5  

K3  cis 4�5  

K  cos −4�5  

KA  cos −2�5  

 

Sum: K1 � K� � K3 � K � KA  0 

Product: K1K�K3K KA  1 
 

�\  1 

K1  cis 0 

K�  cis �3 

K3  cis 2�3  

K  cos � 

KA  cos −2�3  

KO  cis −�3  

 

Sum: K1 � K� � K3 � K � KA � KO  0 

Product: K1K�K3K KAKO  �1 
 

 

So it is that the product of the roots of unity equal 1 when n is odd, and −1 when n is even. Using 

the symbols Π (capital pi) to denote product (i.e. if n is a positive integer then ∏ /=7�� 1 × 2 × 3 × … × 
) we can summarise the right hand column in the table above as 

�K7
=��
7�1  0 and �K7

=��
7�1  � 1 when n is odd

−1 when n is even 

 

1.15.7 Primitive roots of unity 

At the end of section 1.15.1 we saw a diagram of the distribution of the first nine roots of unity. 

Closer inspection of each of these roots will show that some roots of unity occur as roots of 

lower order equations.  
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For example,  

• K  1 is a root not only for �  1 but also of �=  1 for all integer n. Hence K  1 is 

called a primitive root of unity; 

• K  �1 is a root not only of �3  1 but also of �A  1, �\  1, �T  1, and certain other 

unit equations. Hence K  �1 is a primitive root of unity; 

• K  �1/2 ± �√3/2 is a root not only of �  1 but also of �\  1, ��  1, and certain 

other unit equations. Hence K  �1 is a primitive root of unity; 

• K  ±� is a root not only of �A  1 but also of �T  1 and certain other unit equations. 

Hence K  ±� is a primitive root of unity; 

etc.  

 

A list of primitive roots of unity for �=  1 from 
  1 to 
  9 is shown in the table below, 

where the primitive roots are highlighted in bold. In this table cis � represents cos � + � sin �: 

k : 0 1 2 3 4 5 6 7 8 

��  1 ��� �         

�3  1 cis 0 ����        

�  1 cis 0 ��� w�x  ��� y�x        

�A  1 cis 0 ��� w�y  cis 4�4  ���  �y       

�O  1 cis 0 ��� w�¡  ��� y�¡  ���  �¡  ��� ¢�¡      

�\  1 cis 0 ��� w�   cis 4�6  cis 6�6  cis 8�6  ��� v��      

�D  1 cis 0 ��� w�£  ��� y�£  ���  �£  ��� ¢�£  ��� v��£  ��� vw�£    

�T  1 cis 0 ��� w�¢  cis 4�8  ���  �¢  cis 8�8  ��� v��¢  cis 12�8  ��� vy�¢   

��  1 cis 0 ��� w�¤  ��� y�¤  cis 6�9  ��� ¢�¤  ��� v��¤  cis 12�9  ��� vy�¤  ��� v �¤  
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These roots are illustrated in the diagram below, where only primitive roots have been 

highlighted as blue dots: 

 

 

 

 

 

 

The first fifty roots of unity, taken from https://imgur.com/gallery/YdrNuJ8, can be seen in the 

diagram below. I can’t find the original author of these diagrams, so if you know who created 

them please let me know. 
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1.15.8 Certain properties of roots of unity 

Here we will go through proving certain properties of roots of unity. In this section let K7 by a 

root of unity of �=  1, where /, 
 ∈ ℕ. 

 

Property 1: Consider the example of �O  1. Then K7  cos�2/�/5� + � sin�2/�/5�. So  

K�  cos�2�/5� + � sin�2�/5� and K  cos�6�/5� + � sin�6�/5� . 
 

But also, KA  cos�8�/5� + � sin�8�/5�, so K�K  K�?  KA. It happens to be the case that, 

in general, we have K7K¥  K7?¥. 
Proof:   

K7K¥  !cos !2/�
 & + � sin !2/�
 && !cos !2¦�
 & + � sin !2¦�
 && , 
  cos Z2�/ + ¦��
 [ + � sin Z2�/ + ¦��
 [ , 
  K7?¥  . 
  ∎ 

 

Property 2: Consider again the example of �O  1. Then K�  cos�2�/5� + � sin�2�/5�, and K��  cos�−2�/5� + � sin�−2�/5�. Now notice that �K����  �cos�2�/5� + � sin�2�/5���� =cos�−2�/5� + � sin�−2�/5� = K�. In general we have �K7���  K�7. 
Proof:   

�K7���  !cos !2/�
 & + � sin !2/�
 &&�� , 
  cos !− 2/�
 & + � sin !− 2/�
 & , 
  K�7 . 
  ∎ 
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Property 3: Consider again the example of �O  1. Then K�  cos�2�/5� + � sin�2�/5�, and K3  cos�4�/5� + � sin�4�/5�. Now consider �K��D: 

�K��D  !cos !2�5 & + � sin !2�5 &&D , 
  cos !14�5 & + � sin !14�5 & , 
  cos !4�5 & + � sin !4�5 & , 
  K3 . 

 

In other words, powering K� gives us another root of unity.  

 

As another example,  

�K �   !cos !6�5 & + � sin !6�5 &&  , 
  cos !18�5 & + � sin !18�5 & , 
  cos !8�5 & + � sin !8�5 & , 
  KA . 

To see why this is so notice that  

cos !18�5 & + � sin !18�5 &  cos Z�10 + 8��5 [ + � sin Z�10 + 8��5 [ , (*) 

  cos !10�5 + 8�5 & + � sin !10�5 + 8�5 & ,  

  cos !2� + 8�5 & + � sin !2� + 8�5 & , (**) 

  cos !8�5 & + � sin !8�5 & ,  

  KA .  
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The aim is therefore to perform the arithmetic split shown in (*) such that we obtain 2� (or a 

multiple of 2�) as a term inside the brackets as shown in (**). 

 

In general it is the case that raising any root of unity to an integer power will result in another 

root of unity. In other words, if K7 is a root of unity of �=  1, then �`7�k is also a root of unity 

of �=  1, where j ∈ ℕ. 

 

Proof:   

�K7�k  !cos !2/�
 & + � sin !2/�
 &&k , 
  cos !2j/�
 & + � sin !2j/�
 & . 

 

The quick way of describing the effect of this last equation is that 2j/�/
 is an integer multiple 

of 2/�/
 from which all distinct roots of unity are derived. Hence �K7�k is also a root of unity. 

More properly we have  

�K7�k  cos !2j/�
 & + � sin !2j/�
 & , 
  cos Z��
 + o�2/�
 [ + � sin Z��
 + o�2/�
 [ , 

where �, 
, o are positive integers. Transforming p into �
 � o is basically an application of 

the fundamental theorem of arithmetic which says that any number p (odd or even) can be 

written as a product of two integers plus a remainder. In our case we want to write p in such a 

way as to contain n in the product. By doing this we then have  

�K7�k  cos !2�
/�
 + 2o/�
 & + � sin !2�
/�
 + 2o/�
 & , 
  cos !2�/� + 2o/�
 & + � sin !2�/� + 2o/�
 & , 
  cos !2o/�
 & + � sin !2o/�
 & , 
  Kl . 

where Kl is a root of unity for o  0, 1, 2, 3 …. ∎ 
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Exercise: Prove that, if K3 is a root of unity, then �K3�k  K3k, where j ∈ ℕ. Can you generalise 

this to prove that if K7 is a root of unity, then �K7�k  K7k, where j ∈ ℕ? 

 

Property 4: Consider again the example of �O  1. Then K  cos�6�/5� + � sin�6�/5�. Now 

notice that 

K ¨̈ ¨̈   cos !6�5 & − � sin !6�5 & , 
  cos !− 6�5 & + � sin !− 6�5 & , 
  cos !4�5 & + � sin !4�5 & , 
  K3  KO�  . 

Hence, the conjugate of K  gives another root of unity. In general we have K7¨̈ ¨̈  K=�7.  
 

Proof:   

K7¨̈ ¨̈   cos !2/�
 & − � sin !2/�
 & , 
  cos !− 2/�
 & + � sin !− 2/�
 & , 
  cos !2� − 2/�
 & + � sin !2� − 2/�
 & , 
  cos !2
� − 2/�
 & + � sin !2
� − 2/�
 & , 
  cos Z2�
 − /��
 [ + � sin Z2�
 − /��
 [ , 
  K=�7 . 
  ∎ 
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Property 5: Let K be a cube root of unity. Then, for 
 ∈ ℕ, 

 

1= + K= + �K3�= = © 0 if 
 is not a multiple of 3;
3 if 
 is a multiple of 3;  

 

Proof:  We only need to consider three cases: 
  1, 2, 3: 

 

• For 
  1: 1� + K� + �K3�� = 1 + K + K3 = 0, since 
  1 is not a multiple of 3;  

• For 
  2: 13 + K3 + �K3�3 = 1 + K3 + KA = 1 + K3 + K K = 1 + K + K3 = 0, 

since K  1, and 
  2 is not a multiple of 3;  

• For 
  3: 1 + K + �K3� = 1 + K + �K �3 = 1 + 1 + 1 = 3, since K  1, 

and 
  3 is a multiple of 3; 

All other values of n beyond those three above will only repeat the answers above. A more 

complete/rigorous proof addressing all values of n can be developed by considering the 

three cases of 
  1 + 3/, 
  2 + 3/, and 
  3 + 3/, for /  0, 1, 2, 3, … This is left as an 

exercise. ∎ 

Property 6: It is left as an exercise to prove that, if K be an nth root of unity,  

1m + Km + �K3�m + ⋯ + �K=���m = © 0 if � is not a multiple of �;

 if � is a multiple of 
;  

for � ∈ ℕ. 
 

1.16 On deriving trigonometric identities via complex numbers 

We have all seen how proving trig identities can be very laborious using standard trig identities, 

particularly when the power, or multiple of the angle, is large. However, there is a way of using 

DeMoivre’s theorem which make it considerable easier and shorter to prove trig identities. This 

is what we shall look into. 

 

1.16.1 Trig identities involving powers of trig functions 

Let us now see how we can use DeMoivre’s theorem to deal with powers of trig functions. In 

the last example of the section above we saw that the combination � � 1/� = 2 cos � and � �1/� = 2� sin �. By the same process we can show that �3 � 1/�3 = 2 cos 2� and �3 � 1/�3 =2� sin 2�, etc. This can be generalised for any 
 ∈ ℕ as follows: let �  cos � + � sin �.  



211 

 

Then  

 �= � 1�=  �cos 
� + � sin 
�� + �cos 
� + � sin 
���� ,  

   �cos 
� + � sin 
�� + �cos 
� − � sin 
�� ,  

   2 cos 
� ,  

 

and �= � 1�=  �cos 
� + � sin 
�� − �cos 
� + �. sin 
���� ,  

   �cos 
� + � sin 
�� + �cos 
� − � sin 
�� ,  

   2�. sin 
� .  

where 
 ∈ ℕ. The expressions above of  

�= � 1�=  2 cos 
� (48) 

�= � 1�=  2�. sin 
� (49) 

are important properties of complex numbers (notice that expressions (48) and (49) apply only 

when �  |�|  1. Otherwise you will have factors of �= ± ��= in these expressions). 

 

We are now in a position to be able to find trig identities involving powers of trig functions. For 

example, to find an identity for cos3 � we set 
  1 equation (48), and then square. Hence  

�2 cos ��3 = !� + 1�&3 . 
Expanding both sides as usual we obtain 

4 cos3 � = �3 + 2� 1� + 1�3 . 
The trick is now to collect terms in the form �= � 1/�=, viz  

4 cos3 � = !�3 + 1�3& + 2� 1� , 
this now allowing us to apply (48) to get 

4 cos3 � = 2 cos 2� + 2 , 
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from which we obtain 

cos3 � = 12 �cos 2� + 1� 

(i.e. the alternate form of cos 2� = 2 cos3 � − 1). 

 

The same process can be used to trig identites for any power of cos or sin. E.g. to find the identity 

for sin � we we set 
  1 equation (49), and then cube. Hence  

 �2�. sin ��   !� � 1�&  , 
implying    

 8� sin �  � � �3 !1�& + � ! 1�3& − 1�  . 
We now collect terms in the form �= ± 1/�=, viz  

�8� sin � = !� − 1� & − !� − 1�& , 
this now allowing us to apply (49) to get 

�8� sin � = 2� sin 3� − 2� sin � , 
which simplifies to sin � = 14 �sin 3� − 2 sin �� . 
 

This process can be repeated to find trig identities for cosA � , sinA � , cosO � , sinO �, etc. 

 

If we want to find a trig identity for cos 2� we set 
  2 equation (48), and then square. Hence  

�2 cos 2�� = !�3 + 1�3&  . 
Expanding both sides as usual we obtain 

8 cos 2� = �\ + 3�A 1�3 + 3�3 1�A + 1�\ . 
Again we collect terms in the form �= � 1/�=, i.e.  

8 cos 2� = !�\ + 1�\& + 3 !�3 + 1�3& , 
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this now allowing us to apply (48) to obtain  

8 cos 2� = 2 cos 6� + 3 cos 2� . 
Hence  

cos 2� = 14 cos 6� + 38 cos 2� . 
 

Notice how quickly and easily we arrive at such a compact result compared to the time and 

complexity it would take to get this via the use of standard trig identities.  

 

To find trig identities involving multiple angles, such a 2�, 3�, etc. we simply apply the above 

procedure using 
  2�, 
  3�, etc., in (48) and/or (49). For example, if we want to find an 

identity for tan3 3� we first find sin3 3� and cos3 3� as folows:  

 �2 cos 3��3  !� � 1� &3 , 
⟹ 4 cos3 3�  �\ � 2� ! 1� & + 1�\ , 

   !�\ � 1�\& + 2 , 
   2 cos 6� + 2 , 

⟹ cos3 3�  
12 �cos 6� + 1� , 

which is the identity we expect since this is an alternate form of cos 2E = 2 cos3 E − 1, where E  3�. Similarly for sin3 3� we have  

 �2� sin 3��3  !� � 1� &3 , 
⟹ �4 sin3 3�  �\ � 2� ! 1� & + 1�\ , 

   !�\ � 1�\& − 2 , 
   2 cos 6� − 2 , 

⟹ sin3 3�  
12 �1 − cos 6�� , 
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which is again the identity we expect since this is an alternate form of cos 2E = 1 − 2 sin3 E 

where E  3�.  

 

Now we form tan3 3� in the usual way: 

tan3 3�  
sin3 3�cos3 3� 

  
1 − cos 6�cos 6� + 1 . 

 

This expression could be left as it is or it could be simplified. In order to simplify this we could 

make use of standard trig identites, but because of the angle 6� we will resist this temptation. 

Instead, it would be nice if we could find a way of expanding cos 6� and sin 6� some form of 

using complex analysis. This is what we shall now see in the next section. 

 

1.16.2 Trig identities involving multiples of θ 

Let �  cos � + � sin �. Let us now evaluate �3. ByDeMoivre’s theorem we have  

�cos � + � sin ��3 = cos 2� + � sin 2� . 
But we can also expand the left hand side of the above equation in the usual way to obtain 

cos3 � + 2�. sin � . cos � − sin3 � = cos 2� + � sin 2� . 
Comparing Re and Im parts we have  

 cos3 � − sin3 �  cos 2� ,  

and 2 sin � . cos �  sin 2� . (50) 

What we have done to �cos � + � sin ��3 bears reiterating: on the one hand we have expanded 

this expression as usual, and on the other hand we have applied DeMoivre’s theorem to it. In 

doing this we have recovered the standard identities for cos 2� and sin 2�.  

 

This is not a coincidence. If we want to find the standard identity for cos 3�, we do the same 

thing. Then, letting cos � + � sin � ≡ W + �X we have 

  �W � �X�   cos 3� + � sin 3� , (RHS by DeMoivre’s theorem) 

 ⟹ W � 3W3��X� + 3W��X�3 + ��X�   cos 3� + � sin 3� . (LHS by standard expansion) 
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Comparing Re and Im parts we have  

 cos � − 3 cos � . sin3 �  cos 3� , 
and 3 cos3 � sin � − sin �  sin 3� . 

 

Let us now return to the example involving tan3 3� in the previous section. We got as far as 

tan3 3� = 1 − cos 6�cos 6� + 1 . 
We can now use the analysis of this section to simplify the term cos 6� of this expression. 

Letting cos � + � sin � ≡ W + �X, DeMoivre’s theorem give us 

�W � �X�\  cos 6� + � sin 6� . 
Using Pascal’s triangle of coefficients on the LHS we obtain 

W\ � 6WO��X� + 15WA��X�3 + 20W ��X� + 15W3��X�A + 6W��X�O + ��X�\ = cos 6� + � sin 6� . 
Since we are only interested in the term cos 6� we need only simplify and equate the Re part of 

the above to get  

W\ � 15WAX3 + 15W3XA − X\ = cos 6� , 
Hence  

tan3 3�  
1 − cos 6�cos 6� + 1 , 

  
1 − �W\ − 15WAX3 + 15W3XA − X\��W\ − 15WAX3 + 15W3XA − X\� + 1 , 

  
1 − W\ + 15WAX3 − 15W3XA + X\W\ − 15WAX3 + 15W3XA − X\ + 1 . 

Diving by cos\ � and using 1 + tan3 � = sec3 � we finally obtain our desired identity 

tan3 3� = 18 tan3 � − 12 tanA � + 2 tan\ �2 − 12 tan3 � + 18 tanA �  . 
 

Notice how much easier it has been to come to this answer despite having to expand a 

polynomial of degree 6. In general it is considerably easier to derive trig identities via some 

application of DeMoivre’s theorem than it is to do so via the use of standard trig identities.  
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In fact, there is a saying which goes something like, The quickest way to an answer in the real 

domain is via the complex domain.  

 

1.16.3 Examples on deriving trig identities 

Example 1: What about finding an identity for sinA � . cos �? Here we use equations (48) and 

(49). Hence  

�sin ��A�cos ��   ! 12�&A !� − 1�&A !12& !� + 1�&  , 
  ! 116& !18& *!� + 1�& !� − 1�&+ !� − 1�& , 
  ! 1128& !�3 − 1�3& !� − 1�& , 
  

1128 !�\ − 3�3 + 3�3 − 1�\& !� − 1�& . 
Expanding this last equation, and grouping terms according to �= � 1/�= we obtain  

�sin ��A�cos �� = 1128 !�D + 1�D& − !�O + 1�O& − 3 !� + 1� & + 3 !� + 1�& . 
We can now use equations (48) and (49) to convert the RHS back into trig form. This gives us, 

upon simplifying,  

sinA � . cos � = 1164 �cosD � − cosO � − 3 cos � + 3 cos �� . 
 

Example 2: Suppose we want to show that sec � . cos 5� = 1 − 12 sin3 � + 16 sinA �. We can 

proceed as follows. Letting cos � + � sin � be W � �X we have 

cos 5� = e�cos 5� + � sin 5��  e�W � �X�O , 
  e�WO � 5�WAX − 10W X3 − 10�W3X + 5WXA + �XO� , 
  WO � 10W X3 + 5WXA . 

Dividing this last equation by cos � we obtain  

sec � . cos 5� = cosA � − 10 cos3 � sin3 � + 5 sinA � . 
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Using cos3 � + sin3 � = 1 we can convert this into the form required: 

sec � . cos 5� = �1 − sin3 ��3 − 10�1 − sin3 �� sin3 � + 5 sinA � , 
which simplifes to sec � . cos 5� = 1 − 12 sin3 � + 16 sinA �. 

 

Example 3: Suppose we are given sin � + � cos �. How do we convert this into the standard 

polar form of a complex number? Well, we know that cos��/2 − �� = sin � and sin��/2 − �� =cos �, hence  

sin � + � cos � =  cos��/2 − �� + � sin��/2 − �� . 
From this we can find trig identities based on the expansion of �sin � + � cos ��= where 
 ∈ ℕ. 

Letting X � �W represent sin � + � cos � we have 

�X � �W�=  X= � :
1; X=����W� + :
2; X=�3��W�3 + :
3; X=� ��W� + ⋯ 

Comnparing Re and Im parts we see that  

• cos��/2 − �� = X= − :
2; X=�3W3 + :
4; X=�AWA − ⋯ 

and 

• sin��/2 − �� = :
1; X=��W − :
3; X=� W + :
5; X=�OWO − ⋯ 

 

Example 4 Suppose we want to find an equation which is satisfied by tan � when tan 3� = 0. 

To start with we kno that the tan function comes from sin/cos, so set up cos 3� + � sin 3�, use 

Demoivre’s theorem appropriately, do some algebra and then divide the Im part by the Re part. 

Therefore, letting cos � + � sin � ≡ W + �X we have 

cos 3� + � sin 3�  �W � �X�  , 
  W � 3W3��X� + 3W��X�3 + ��X�  , 
  W � 3WX3 + ��3W3X − X � . 

Hence  

tan 3� = 3W3X − X W − 3WX3 . 
Now, to get an equation in tan � we divide top and bottom of the right hand side of this last 

equation by cos � to get 

tan 3� = 3� − � 1 − 3�3 , 
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where � ≡ tan �. So, in order for tan 3� = 0 we need 3 tan � − tan � = 0. As an exercise, try 

finding similar equations for tan � when tan 4� = 0, tan 5� = 0, etc. 

 

Example 5: Suppose we want to find an equation which is satisfied by tan � when 4� = �/2. 

Following the same approach as in example 5, and since we want an expression involving 4�,  

we have 

cos 4� + � sin 4�  �W � �X�A , 
  WA � 4W ��X� + 6W3��X�3 + 4W��X� + ��X�A, 
  WA � 6W3X3 + XA + ��4W X − 4WX � . 

Hence 

tan 4�  
sin 4�cos 4� , 

  
4W X − 4WX WA − 6W3X3 + XA , 

  
4� − 4� 1 − 6�3 + �A . 

When 4� = �/2, tan 4� = ∞, and this can only be so if the denominator of the above equation 

is zero. Therefore the equation which is satisfied by tan � in this case is 1 − 6�3 + �A = 0. As an 

exercise, try finding similar equations for tan � when 3� = �/2, 5� = �/2, etc. 

 

Example 6: We now know how to use the expressions �= ± 1/�= to find particular trig 

identities. For example, we know how to express � � 1/�  in terms of powers of cos � and/or sin �. However, suppose we want to express � � 1/�  in terms of some other form of � � 1/�. 

There are then two ways we could do this: i) knowing the form in which we want to express � � 1/� , or ii) not knowing the form � � 1/�  can be expressed in, and therefore having to 

determine the form. 

 

In the case of i) let us suppose we want to express � � 1/�  exactly in terms of � � 1/�. Then 

we can start our analysis with � � 1/� (i.e. the form we want to get), and proceed from there, 

viz:  

!� � 1�& 
  � � 3�3 !1�& + 3� !1�&3 + !1�& , 
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!� � 1�& 
  !� � 1� & + 3 !� + 1�& , 

from which 

� � 1� = !� + 1�& − 3 !� + 1�& . 
Effectively we have used the “answer”, i.e. the form we wanted to recast � � 1/�  into, in order 

to derive � � 1/� .  

 

However, there are times when we don’t know whether a given expression can be reduced into 

a specific form. There is no “answer” that we can use to start our analysis. In this case we end 

up having to derive the final form directly from � � 1/� . As such we proceed as follows: 

letting  cos � + � sin � ≡ W + �X we have 

� � 1�   2 cos 3�  2e�cos 3� + � sin 3�� , 
    2e�W + �X�  , 
    2e�W + 3W3��X� + 3W��X�3 + ��X� � , 
    2 cos � − 6 cos � . sin3 � , 
    2 Z12 !� + 1�&[ − 6 Z12 !� + 1�&[ Z! 12�&3 !� − 1�&3[ , 
    

14 !� + 1�& + 34 !� + 1�& !� − 1�&3 , 
    

14 !� + 1�& + 34 !� + 1�& !�3 + 1�3 − 2& , 
Multiplying out the second term on the RHS and collecting terms appropriately we get 

� � 1� = 14 !� + 1�& + 34 !� + 1� & + 34 !� + 1�& − 32 !� + 1�& . 
Moving the second term on the RHS to the LHS, and simplifying the last two terms gives 

14 !� + 1� & = 14 !� + 1�& − 34 !� + 1�& , 
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Hence 

� � 1� = !� + 1�& − 3 !� + 1�& . 
 

Left as an exercise: Express � �A − 1/�A�/�� − 1/�� in terms of �� � 1/�� . 

 

1.16.4 An alternative approach to deriving the identity for �	
�
�� 
This example is taken from “Where there is pattern, there is significance”, Lloyd Olson, The 

college mathematics journal, Vol 20, issue 4 (Sept 1989), p321. 

 

Consider using the above properties of complex numbers to derive the identities for tan 2�, tan 3�, tan 4�, etc. Letting � ≡ tan � we then have  

tan 2� = sin 2�cos 2� = ®��cos 2� + � sin 2��e�cos 2� + � sin 2�� = ®��W + �X�3e�W + �X�3   
2�1 − �3 

tan 3� = sin 3�cos 3� = ®��cos 3� + � sin 3��e�cos 3� + � sin 3�� = ®��W + �X� e�W + �X�   
3� − � 1 − 3�3 

tan 4� = sin 4�cos 4� = ®��cos 4� + � sin 4��e�cos 4� + � sin 4�� = ®��W + �X�Ae�W + �X�A   
4� − 4� 1 − 4�3 + �A 

 If we look carefully at the way in which the coefficients are distributed across the denominators 

and the numerator we can see the pattern illustrated in the diagram below.  
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If we now consider the expansion of �1 + ���=, for 
 ≥ 2 we have  

 �1 + ���3 = 1 + 2�� − �3 

 �1 + ��� = 1 + 3�� − 3�3 − 3��  

 �1 + ���A = 1 + 4�� − 6�3 − 4�� + �A 

So it seems that the coefficients of tan 
� can be derived from the expansion of �1 + ���=, where 
 ≥ 2. All we have to do is to take the Re and Im parts of each of these expressions and divide 

appropriately. For example, tan 3� = ®��1 + ��� /e�1 + ��� . So in general we have that  

�1 + ���= = �1 + �. tan ��= = !1 + �. sin �cos �&= = !cos � + � sin �cos � &= = cos 
� + � sin 
�cos= �  , 
by DeMoivre’s theorem. From this we have  

tan 
� = sin 
�cos 
� = ®��1 + ���=e�1 + ���= = :
1; � − :
3; � + ⋯
1 − :
2; �3 + :
4; �A + ⋯  , 

where � ≡ tan �.  

 

1.16.5 A Proof without words 

The following is taken directly from “ Proof without Words: Complex Numbers with Modulus 

One”, Jean Huang (Senior), Mathematics Magazine, Vol. 79, No. 4 (Oct., 2006), p. 280. 

 

Any complex number � with |�|  1, except �  �1, can be expressed as �1 + ���/�1 − ��� for 

some real number t. 

 

From the diagram below, noting that �  tan��/2�, we see that  

arg !1 + ��1 − ��& = arg�1 + ��� − arg�1 − ��� = �2 − !− �2& = � = arg��� , 
and 

°1 + ��1 − ��° = |1 + ��||1 − ��| = 1 = |�| . 
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1.16.6 Finding exact values to trig and inverse trig equations 

DeMoivre’s theorem can be used very effectively to find exact values to trig trig equation. Going 

straight into an example will illustrate how we can do this.  

 

Example 1: By finding the sum of the roots of � � 1 = 0 we can derive an exact value for 

whatever trig equation arise from this. Hence, for �  1 we have �7  cos�2/�/3� +� sin�2/�/3� for /  0, 1, 2. Hence  

�1  cos !2�3 & + � sin !2�3 & , 
��  cos !4�3 & + � sin !4�3 & = cos !2�3 & − � sin !2�3 & , 

�3  cos !6�3 & + � sin !6�3 & = cos�2�� + � sin�2�� = 1 . 
Summing these gives 

�1 � �� � �3  1 + 2 cos !2�3 & . 
By the analysis of classical algebra relating to 	a � qa3 � Wa � ±  0 we know that the sum of 

roots equals �q/�2	�. This also applies to polynomial equations involving complex variables. 

So for � � 1 = we have �q/�2	� = 0. Hence  

1 + 2 cos !2�3 & = 0 , 
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implying 

cos !2�3 & = − 12 . 
So it is possible to use the analysis of complex roots to obtain exact values of trig functions in 

the real domain. 

 

Example 2: Repeating the analysis above for �A � 1 = 0 we have �A  �1 from which the roots 

are  

�7  cos � + 2/�4 + � sin � + 2/�4  , 
for /  0, 1, 2, 3. Hence  

�1  cos :�4; + � sin :�4; , 
��  cos !3�4 & + � sin !3�3 & , 

�3  cos !5�4 & + � sin !5�4 & = cos !3�4 & − � sin !3�4 & , 
�  cos !7�4 & + � sin !7�4 & = cos :�4; − � sin :�4; . 

 

Summing these, and knowing that the sum of roots equals zero, we obtain 

�1 � �� � �3 � �  cos :�4; + cos !3�4 & = 0 . 
 

Exercise: Obtain similar results as above for �O � 1 = 0, �\ � 1 = 0, etc., and � � 1 = 0, �A �1 = 0, etc. 

 

Example 3: Consider wanting to derive the exact value of the inverse tan equation relating to �  4 + 2�. How do we do this? Well, our aim here will be to factorise z in such a way that the 

argument of one of the factors is a standard, known, argument. For z we have 

4 + 2� = �3 − ���1 + �� . 
Finding the arguments of both LHS and RHS, and remembering that arg����3� = arg���� +arg��3� as well as the principal argument interval of �� < � ≤ �, we have  

tan�� !24& = tan�� !− 13& + tan���1� . 
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Since tan�� 1 = �/4 is a standard result, we have, after rearrangement and simplification,  

tan�� !12& + tan�� !13& = �4 . 
 

Note that other complex numbers also gives this same equation. For example, �  5 + 5� can be 

factored as �2 + ���3 + ��. Taking the arguments of these numbers we have 

 tan�� !55&  tan�� !12& + tan�� !13& , 
i.e. 

�4  tan�� !12& + tan�� !13& . 
 

So by considering the arguments of a complex number and its factors we can determine a 

relationship between the arguments, and find inverse tan equations which satisfy an exact 

value.  

 

Example 4: Let �  3 + 5�. Then the factors of z are �4 + ���1 + ��. Hence, taking arguments 

gives 

 tan�� !53&  tan�� !14& + tan���1� , 
i.e. 

�4  tan�� !53& − tan�� !14& . 
 

Exercise: For the following complex numbers find two factors, and use these to show the given 

inverse trig equations: 

a) �  2 + 4�; tan�� 2 − tan���1/3� = �/4 , 
b) �  4 + 6�; tan���3/2� − tan���1/5� = �/4. 

 

Example 5: Notice that cos � + � sin � = −1, cos 2� + � sin 2 = 1, cos 3� + � sin 3� = −1, etc., 

so that in general we have cos /� + � sin /� = �−1�7. We can express the LHS of this last 

equation in many ways, for example �cos /�/2 + � sin /�/2�3, �cos /�/3 + � sin /�/3� , etc.  

 

Letting cos � + � sin � ≡ W + �X, let us analyse �W � �X�  where �  /�/3. Expanding and 

collecting Re and Im terms we have 

�W � �X�  W � 3WX3 + ��3W3X − X � = �−1�7 . 
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Comparing Im terms left and right we have 

3W3X − X = X�3W3 − X3� = 0 . 
Therefore sin�/�/3� = 0 or 3 cos3�/�/3� − sin3�/�/3� = 0. Since sin�/�/3� = 0 is not 

generally valid we have  

3 cos3 !/�3 & − sin3 !/�3 & = 4 cos3 !/�3 & − 1 = 0 . 
Letting /  1, 2, 3 we have 

• For /  1, 4 cos3��/3� − 1 = 0, implying cos��/3� = ±1/2. Since �/3 is in the first 

quadrant we end up with  

cos :�3; = 12 . 
 

• For /  2, 4 cos3�2�/3� − 1 = 0, implying cos�2�/3� = ±1/2. Since 2�/3 is in the 

second quadrant we end up with  

cos :�3; = − 12 . 
 

• For /  3, 4 cos3�3�/3� − 1 = 0, implying cos�3�/3� = ±1/2. Since 3�/3 is not in the 

first quadrant we end up with  

cos :�3; = − 12 . 
 

Hence we have (amongst other possibilities) the following exact-value equations: 

 

cos :�3; + cos !2�3 & = 0 , cos !2�3 & − cos :�3; = −1 , cos !2�3 & + cos��� = −1 . 
 

 

We can repeat the above analysis for �W � �X�= where �  /�/
, for any value 
 ∈ ℕ. Therefore, 

for �W � �X�O  ��1�7 we have  

�W � �X�O  WO � 10W X3 + 5WXA + ��5WAX − 10W3X + XO� = �−1�7 . 
Comparing Im terms left and right we have 

5WAX − 10W3X + XO = 0 . 
Since sin�/�/5� ≠ 0 in general we can divide the above equation by this term, giving  

5WA − 10W3X3 + XA = 0 . 
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Substituting X3  1 − W3, and simplifying, we obtain  

16WA − 12W3 + 1 = 0 . 
This equation is a quadratic in WA hence solving by the quadratoc formula we end up with 

cos !/�5 & = ±Y3 ± √58 = ± 1 ± √54  . 
 

There are four values here with alternating ± signs. Knowing that as � increases from 0 → �, cos � decreases from 1 → −1, the values above are in the following order for /  1, 2, 3, 4:  

 

• For /  1,  

cos :�5; = 1 + √54  . 
 

• For /  2,  

cos !2�5 & = −1 + √54  . 
 

• For /  3,  

cos !3�5 & = 1 − √54  . 
 

• For /  4,  

cos !4�5 & = −1 − √54  . 
 

Hence we have (amongst other possibilities) the following exact-value equations: 

 

cos :�5; − cos !2�5 & = 12 , cos !3�5 & + cos !4�5 & = √52  , 
cos !4�5 & − cos :�5; = − 12 − √52  , cos :�5; + cos !2�5 & + cos !3�5 & + cos !4�5 & = 0 . 

 

Example 6: Using the method of section 1.16.2 we can show that cos 4� = 8 cosA � −8 cos3 � + 1. If we let �  �/8 we obtain  

cos 4 :�8; = 8 cosA :�8; − 8 cos3 :�8; + 1 , 
implying 8 cosA :�8; − 8 cos3 :�8; + 1 = 0 . 
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Solving this as a quadratic in cos3��/8� we have cos3��/8� = �2 ± √2�/4 giving us cos��/8� =
± :U2 ± √2; /2. Since �/8 in the first quadrant, the only possible answers are cos��/8� =
:U2 ± √2; /2, and testing both these answers shows us that the only valid answer is  

cos :�8; = U2 + √22  . 
Similar substitution with appropriate values for � can be made in other trig equations involving 

multiple angles. 

 

1.17 On the connection between general roots of a complex number and roots of unity 

– To come 
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1.18 Exponential form of a complex number 

1.18.1 Euler’s formula 

So far we have seen two ways in which a complex number can be represented, namely the 

Cartesian form �  a � �b and the polar form �  ��cos � + � sin ��. We will now see a third 

way of expressing a complex number.  

 

At this stage in one’s mathematical development the most usual way of developing this third 

way is to consider the Taylor series for cos a and sin a, and compare these with the Taylor series 

for ². Hence  

cos a = 1 − a32! + aA4! − a\6! + ⋯ , sin a = a − a 3! + aO5! − aD7! + ⋯ 

and 

²  1 + a + a32! + a 3! + aA4! + aO5! + a6! + a7! + ⋯ 

 

These three series converges for all values of θ  in �∞ < � < ∞. Now, if we look carefully we 

might feel that we can combine the series for cos � and sin � in some way so as to obtain the 

series for ´. This can indeed be done if we remember our powers of �, namely that �  �, �3 �1, �  ��, etc. Then, if we let a  �� in the expeonential series we have 

�´  1 + �� + ����32! + ���� 3! + ����A4! + ����O5! + ����\6! + ����D7! + ⋯, 

  1 + �� − �32! − � � 3! + �A4! + � �O5! − �\6! − � �D7! + ⋯, 
  1 − �32! + �A4! − �\6! + ⋯ � Z� − � 3! + �O5! − �D7! + ⋯ [ . 

 

Hence we see that  

 �´  cos � + � sin � . (51) 

 

This formula is known as Euler’s formula/identity for complex numbers (don’t confuse this 

with the other Euler formula which links the number of vertices and edges of a polygon). What 

(51) shows us is that, by moving from the real domain to the complex domain, we are able to 

establish a connection between the exponential function and the two main trig functions. 
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However, we now have a fundamental problem: although we have been able to use i to 

arithmetically combine the cos and sin series into the exponential series is it just a coincidence, 

a quirk of arithmetic? Another way of saying this is, How do we know if (51) converges? 

Remember that not all arithmetic on real numbers transfers automatically to arithmetic on 

complex numbers, so just because the cos, sin and exponential series converge for real values 

it doesn’t mean that this will automatically be so for complex values. For example,  

in ℝ the sum 1 + 2 + 3 + 4 + ⋯ → ∞ (diverges) 

whereas 

in ℂ the sum 1 + 2 + 3 + 4 + ⋯ = − ��3 (converges) 

 

This last one, seeming very strange (if not impossible), would require us to go into some high 

level complex analysis about the converges characteristics of complex valued series, and 

something called the Riemann Zeta function. Since this lies way beyond the scope of these notes 

we will go through two alternative ways of illustrating that (51) is indeed true for all �. 

 

The first approach is taken from “Complex numbers in advanced algebra”, by H. E. Webb, 

American mathematical monthly, Vol 27, No 11, (Nov 1920), pp411-413: Let us assume that µ´  cos � + � sin � for some complex number z. Then, since µ´. �µ´ = 1 and �cos � +� sin ���cos � − � sin �� = 1 we can write �µ´  cos � − � sin �. Adding and subtracting the 

equations in µ´ and �µ´ we have 

cos � = µ´ + �µ´2  , � sin a = µ´ − �µ´2  . 
 

Now, if we expand µ´ and �µ´ according to their Taylor series, and then halve these, we obtain 

cos � = 1 + �3�32! + �A�A4! + �\�\6! + ⋯ 

and 

 � sin � = �� + � � 3! + �O�O5! + �D�D7! + ⋯ (*) 

Dividing both sides of (*) by � we obtain  

� sin �� = � + � �33! + �O�A5! + �D�\7! + ⋯ 

Taking the limit as � → 0 we have  
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 � lim´→1
sin ��   lim´→1 Z� + � �33! + �O�A5! + �D�\7! + ⋯ [ , (**) 

 
⟹ �  � .  

 

So even if the sum of the terms after the first term in (**) does diverge for any general �, this 

sum will approach 0 as � approaches 0. Hence we can say that �´  cos � + � sin �. 

 

However, by dividing (*) by � and taking limits we have effectively side-stepped the question 

of convergence of �´. This feels like a bit of a cheat, and the problem of whether or not the 

complex-valued expansion of �´ converges still remains to be addressed (in a future complex 

analysis course). 

 

One way to overcome this is to develop a more formal and abstract approach. As such let us 

assume that �´ can be formed as a combination of two functions ¶��� and ·��� as follows: 

 �´  ¶��� � �. ·��� . [*] 

 

Now, when developing a new mathematical object, such as a complex number, or a function of 

a complex variable, what we want to do is to keep as many of the arithmetic and calculus rules 

that work for real numbers and functions. This will not always be possible, so what we do is 

assume that a certain rule of real numbers and functions can be transferred to complex 

numbers and functions, apply this rule and see if we are able to obtain something which “works”  

 

So, our question is What form do ¶��� and ·��� take? Can we even find suitable functions ¶��� 
and ·���? Well, in order to be consistent with current arithmetic and the laws of indices we 

want 1  1. Therefore,  

1 = ¶�0� + �. ·�0� . 
Comparing Re and Im parts implies ¶�0� = 1 and ·�0� = 0. Also, if �´ is to have the usual 

property of differentiation the we need ��´  ¶¸��� � �. ·¸��� . 
(in other words, we are assuming that we can differentiatie a function having i just as we can 

differentiate a function having a real number). When �  0 we have  

�  ¶¸�0� + �. ·¸�0� . 
This is true on condition that ¶¸�0� = 0 and ·¸�0� = 1.  
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Differentiation again gives us 

 ��´  ¶¸¸��� � �. ·¸¸��� . [**] 

 

When �  0 we have  �1 = ¶¸¸�0� + �. ·¸¸�0� , 
again being true on condition that ¶¸¸�0� = −1 and ·¸�0� = 0. Adding [*] and [**] we have  

¶¸¸��� � ¶��� � �. �·¸¸��� + ·���� = 0 , 
implying 

 ¶¸¸��� � ¶���  0, with ¶�0� = 1 and ¶¸�0� = 0 , 

and ·¸¸��� � ·���  0, with g�0� = 0 and ¶¸�0� = 1 . 

 

These two equations, along with their associated conditions, are standard ordinary differential 

equations whose solution are also standard: ¶���  cos � and ·���  sin �. Hence we are 

correct in making the arithmetic and differentiation assumptions above. Therefore if �´ is to 

be a complex number with the arithmetic and differentiation assumptions above then we have �´  cos � + � sin �.  

 

Example 1: If we let �  � in Euler’s identity we obtain ��  cos � + � sin � which simplifes to 

��  �1 or �� � 1 = 0. 

This equation links the fundamental numbers 0, 1, e, and π into one elegant expression. 

 

Example 2: To express �  �10 in exponential form we find � and � in the same way as before. 

Hence we have that �  |�|  U��10�3 + 03 = 10, and �  arg��� = tan���0/−10� + � = �. 

Hence �  10��. 

 

Example 3: Similar to example 1 we can express �  �2�� in exponential form to be �  |�| 2� and �  arg��� = tan���−2�/0� = −�/2. Hence �  2�. ���/3. 

 

Example 4: To express �1 + ��31 in exponential form we let �  1 + �. Then we have �  |�| 
√2 and �  arg��� = tan���1� = �/4. Hence �  √2. ��/A. Therefore �31  �√2. ��/A�31 =
1024. 31��/A = 1020. ��. 
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Example 5: For �  �2√3 − 2� in exponential form we have �  |�|  √12 + 4 = 4 and � 
arg��� = tan�� :−2/�−2√3�; − � = −5�/6. Hence �  4�O��/\. 

 

Example 6: To express �  �1 + ��/�√3 − �� in exponential form we have  

�  |�|  ¹ �1 + ���√3 − ��¹ = |1 + �|º√3 − �º = √22  , 
and 

�  arg��� = arg ! 1 + �√3 − �& = arg�1 + �� − arg�√3 − �� = �4 − �6 = �12 . 
Hence �  √33 . ��/�3. 

 

Example 7: To express the complex number �  ���/  in Cartesian form we simply rewrite it 

in polar form and evaluate the trig functions. Hence �  cos�−��/3� + � sin�−��/3� = �3 − � √ 3  . 

 

Example 8: Similar to example 6 we can express the complex number �  5�� in Cartesian 

form by again rewriting it in polar form and evaluating the trig finctions. Hence: � 5�cos��� + � sin���� = −5. 

 

Exercises: Show that i) 2 + � = √5. ��»¼½¾¿��/3��, and ii) �3 − 4� = 5��»¼½¾¿�A/ ����. 

 

1.18.2 Proof of DeMoivre’s theorem for all real powers 

Euler’s identity was derived independently from any mathematics used to derive/prove 

DeMoivre’s theorem. As such we can prove DeMoivre’s theorem from Euler’s identity. Let us 

therefore start with Euler’s identity: �´  cos � + � sin � . 
Hence, for any 
 ∈ ℝ we have 

 ��´�=  �cos � + � sin ��= .    (*) 

Now, although we haven’t proved this (since it is beyond the scope of these notes) it is the case 

that ��´�= is defined for all 
 ∈ ℝ, and that ��´�=  �=´ (if and when I get to the proofs of 

these they will be in the notes “Complex numbers III”).  
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Since 
� can be considered as an angle in-and-of-itself, we can write �=´  ��=´�, and we can 

apply Euler’s formula again to obtain  

 ��=´�  cos�
�� + � sin�
�� .    (**) 

Hence, by (*) and (**) we have 

 �cos � + � sin ��= = cos�
�� + � sin�
�� . (52) 

Thus we can now apply DeMoivre’s theorem for any 
 ∈ ℝ. But, it is important to understand 

that, although it may look it, (52) does not represent the process of directly converting a power 

into a multiplication, as it does when n is an integer or a rational number. Equation (52) is, in 

fact, the consequence of Euler’s identity and the properties of complex exponential functions. 

This then allows us to connect the expression �cos � + � sin ��= to cos�
�� + � sin�
�� in a 

mathematically valid manner. In brief, the valid sequence of steps which allow (52) to be true 

are  �´  cos � + � sin � , 

therefore,  

��´�=  �cos � + � sin ��=. 
But 

��´�=  �=´  ��=´�. 
So  ��=´�  cos�
�� + � sin�
�� . 
 

1.18.3 The geometric intepretation of e iθ 

Since �´  cos � + � sin � we have º�´º  |cos � + � sin �| = √cos3 � + sin3 � = 1. Also, since 

a  cos � and b  sin � we have Ua3 � b3  1 implying a3 � b3  1. All this means that �´ 

represents a point on a unit circle, centre �0, 0�, at an angle � to the horizontal, as illustrated in 

diagram (a) below.  

 

Consider now �. �À, where � ∈ ℝ. What is the geometric effect on z of multiplying by �À? Well,  

�. �À = ��´�À = ���´?À� . 
Hence �À has the effect of rotating z by an angle �. This is illustrated in diagram (b) below. 
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 (a): �´ as apoint on the unit circle (b): The effect on z of multiplying by �À 

 

1.18.4 The relationship between cos and sin and �´ 

Probably one of the most useful properties of complex numbers in exponential form involves 

the connection between �´ and the cos and sin functions. Therefore, if �  �´ and �∗  ��´ 

then  

 � � �∗  ��´ � ��´�  2 cos � , 
and  � � �∗  ��´ � ��´�  2� sin � . 
Here we have two equations which relate the trig functions to the exponential form of a complex 

number, namely 

 cos � = 12 ��´ + ��´� , sin � = 12� ��´ + ��´� . (53) 

These relations allow us to more easily manipulate complex numbers and trig equations. More 

generally it can be shown that  

 cos /� = 12 ��7´ + ��7´� , sin /� = 12� ��7´ + ��7´� . (54) 

 

Now, just as we used the relationship between complex numbers and trig functions in section 

1.16, to derive trig identities, so we can use (53) and/or (54) above to derive trig identities. So, 

to derive the identity for sin � we proceed as follows: 
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sin �  Z�´ � ��´2� [  , 
  � 18� Á��´� − 3��´�3���´� + 3��´����´�3 − ���´� Â , 
  � 18� � �´ − 3�´ + 3��´ − � �´� . 

 

Collecting terms in like powers we obtain 

 

sin � = − 14 Z �´ − � �´2� [ + 34 Z�´ − ��´2� [ , 
which gives sin � = + 34 sin � − 14 sin 3� . 
 

We can also use (53) and/or (54) above to derive standard trig identities such as  

2 sin � cos Ã = sin�� + Ã� + sin�� − Ã� 

as follows: 

2 sin � cos Ã  2 Z�Ä − ��Ä2� [ Z�Å + ��Å2 [ , 
  

12� ��Ä�Å + �Ä��Å − ��Ä�Å − ��Ä��Å� , 
  

12� ���Ä?Å� + ��Ä�Å� − ���Ä�Å� − ���Ä?Å�� , 
  

12� Æ���Ä?Å� − ���Ä?Å�� + ���Ä�Å� − ���Ä�Å��Ç , 
  sin�� + Ã� + sin�� − Ã� . 
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1.18.5 More examples  

Example 1: Evaluating �  �3��/\��2�O��/A� we have �  6��/\�O�/A = 6�� ��/�3. 

Converting this into principal argument form we obtain �  6���/�3. 
 

Example 2: Evaluating �  6O��/ /�43��/ �3
 we have �  \�\ O��/ /A��/ =  T ��/ . 

 

Example 3: Evaluating �  :�√3 − ��/�√3 + ��;A × ��1 + ��/�1 − ���O
 we have first convert to 

exponential form: �  �2���/\/2��/\�A�√2��/A/√2���/A�O
. We now simplify and use the 

rules of exponents: �  ��3��/\�A�3��/\�O = D��/\ = ��/\. 

 

Example 4: If �  2√2 + 2√2 � and `  �1.5√3 + 1.5� then we can find �3`A in exponential 

form as follows: ��  |�|  4 and �  arg��� = tan��Æ�2√2�/�2√2�Ç = �/4, hence �  4��/A. 

Also, �3  |`|  3, and �  arg�`� = tan��Æ1.5/�−1.5√3�Ç + � = 5�/6, hence `  3O��/\. 

 

Therefore  

�3`A  �4��/A�3�3O��/\�A , 
  �16��81��3��/A��31��/\� , 
  12963 ��/\ , 
  1296O��/\ . 

 

Example 5: If �  O\� O\√3 � and `  �4√3 − 4� then we can find �� `A�∗ in exponential form 

as follows: ��  |�|  5/3 and �  arg��� = tan�� √3 = �/3, hence �  5��/ /3. Also, �3 |`|  8, and �  arg�`� = tan��Æ−4/�−4√3�Ç − � = −5�/6, hence `  8�O��/\. 

 

Therefore  

�� `A�∗  È!53 ��/ & �8�O��/\�AÉ∗ , 

  È!53& 8A��. ��1��/ É∗ , 
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So �� `A�∗  8 !403 & D��/  , 
  8 !403 & ��/  . 

 

Example 6: If �  �  A√2 +  3 √2 � and `  0.3 − 0.3√3 � then we can find �∗/`  in exponential 

form as follows: ��  |�|  3√10/4 and �  arg��� = tan���−2� + � ≈ 2.034 radians, hence 

�  3√10. 3.1 A�/4. Also, �3  |`|  0.6, and �  arg�`� = tan��Æ−1/√3Ç = −�/6, hence ` 
0.6���/\. 

 

Therefore  

�∗`   
Z3√104 3.1 A�[∗

:35 ���/\;  , 

  

3√104 �3.1 A�
27125 ���/3  , 

  
125√1036 ��3.1 A�����/3� , 

  
125√1036 . �1.A\ � . 

 

Example 7: Suppose we want to show  

sin 2�
 + sin 4�
 + sin 6�
 + ⋯ + sin 2�
 − 1��
 = 0 . 
How do we recognise that we can use complex analysis to solve this problem? Well, one sign is 

that we are dividing each angle by the same value n. This suggests that we are taking the nth root 

of something. Also notice that each successive numerator goes like 2/�. So it seems as if we are 

taking the nth root of unity. Hence it might be worth trying to use complex analysis for this 



238 

 

problem. So let us solve �=  1. As usual, �  |�|  1 and �  arg��� = 2/� for /  0, ±1, ±2, … 

So we have �=  37�� . 
Therefore  �  37��/= . 
Hence we have roots  

�1  1, ��  3��/= , �3  A��/=, �  \��/=, … , �=��  3�=�����/= . 
Since the sum of the roots of �= � 1 = 0 is zero we have 

1 + 3��/= + A��/= + \��/=+. . +3�=�����/= = 0 , 
from which (by comparing Re and Im parts)  

sin 2�
 + sin 4�
 + sin 6�
 + ⋯ + sin 2�
 − 1��
 = 0 . 
 

1.18.6 Roots of complex numbers in exponential form 

Finding roots via the exponential form of a complex number can also be done. In this case if � �. �´ then  

 ��/= = ��/=. ���´?37����/= = ��/=. ��´?37��/= , (55) 

where /  0, ±1, ± 2, ±3 …, and where the principal value is given by �  √�f . �´/=, with the 

interval for the principal argument still being �� < Arg��� ≤ 1. 

 

Example 1: To find the four 4th roots of �  1 + � in exponential form we have �  |�|  √2 and 

�  arg��� = �/4. Hence �  √2. ��/A, and ��/A = �√2. ���/A?37����/A = √2Ê . ���/A?37��/A. 

Hence  

�1  √2Ê . ��/�\ , ��  √2Ê . ���/�\ , 
�3  √2Ê . �D��/�\ , �   √2Ê . 3O��/�\ . 

 

Example 2: To find the six 6th roots of �  �1 − √3� in exponential form we have �  |�|  2 

and �  arg��� = tan���−√3� /�−1� − � = −2�/3. Hence �  2. �3��/ , and  

��/\ = �2. ���3�/A?37����/\ = √2Ê . ���3�/ ?37��/\.  
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Therefore 

�1  √2Ê . �3��/�T , ��  √2Ê . A��/�T , 
�3 = √2Ê . �1��/�T , �  √2Ê . �\��/�T , 
�A = √2Ê . 33��/�T = √2Ê . ��A��/�T , �O  √2Ê . 3T��/�T = √2Ê . �T��/�T . 

 

1.18.7 More complicated examples  

1) Let us solve  

!� � �� � �&
=  1 . 

 We have seen examples similar to this in section 1.15, but we will now solve this using the 

exponential form of complex numbers. Hence  

� � �� � �  1�/= = �37���/= = 37�/= , 
 for /  0, 1, 2, … , 
 − 1. Therefore � � �  �� � ��37�/=. Expanding and collecting terms in 

z we obtain ��37�/= − 1� = ��37�/= + 1�. Hence  

�  �. 37�/= + 137�/= − 1 , 
  �. 7�/= + �7�/=7�/= − 7�/=  , 
  �. 2 cos /�/
2� sin /�/
 . 

 

 Hence �  cot /�/
. Notice how much easier it is to perform complex number work in 

exponential form compared to that of section 1.15. 

 

2) Suppose we want to find the sum of  

1 + cos � + cos 2� + ⋯ + cos 
� . 
 Knowing about complex numbers we can rewrite this as e�1 + �´ + 3�´ + ⋯ + =�´�. 

Now notice that this is a geometric sequence with first term equal to 1 and common ratio 

equal to �´.  



240 

 

 

 We can therefore, find the sum of this series by the usual geometric sum formula. Hence  

e�1 + �´ + 3�´ + ⋯ + =�´� = e Z1 − ���´1 − �´  [. 
 We now want to factor out a term in ���´/3 so as to transform the numerator into its 

equivalent cos and sin forms. Ditto for the denominator. So we now have 

e�1 + �´ + 3�´ + ⋯ + =�´�  e Z���´/3 �����´/3  − ���´/3��´/3 ���´/3  − �´/3� [ , 
  e !. O�´ sin 11�/2sin �/2 & , 
  cos 5� . sin 11�/2sin �/2  

 

 Exercise: Find the sum of cos � + cos 2� + ⋯ + cos 
�. This is the same sum as example 

2, but without th eleading 1 (ans: cos��
 + 1��/2� �sin 
�/2�/�sin �/2�).  

 

 Exercise: Find the sum of 1 + sin � + sin 2� + ⋯ + sin 
�, and sin � + sin 2� + ⋯ + sin 
� 

  

3) Continuing the idea of example 2 we can find the sum of cos � + cos�� + �� +cos�� + 2�� … + cos cos�� + 
��:  

e��´ � ��´?À� � ��´?3À� �⋯� ��´?=À�� . 
 Factoring out �´ we obtain  

eË�´�1 + �À + 3�À + ⋯ + =�À�Ì . 
 The terms in the bracket form a geometric series with first term 1 and common ratio �À, 

from which th eresult of the solution can be developed. This is left as an exercise.  

 

4) Consider studying �1 + 3�´�=
 in two different ways. The first way is to do a standard 

algebraic trick as follows: 

�1 + 3�´�=
  È�1 + 3�´� Z��´��´[É= , 
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So �1 + 3�´�=
  ���´ � �´�=��´�= , 

  2 cos � �cos 
� + � sin 
�� . 
 

 The second way is to expand �1 + 3�´�=
 using the binomial theorem. Now, for two complex 

numbers z and w we have �� � `�=  ∑:
/; �=�7`7. Hence  

�1 + 3�´�=
  �:
/; �3�´�7

=
7�1  , 

  �:
/; �cos 2� + � sin 2��7=
7�1  , 

  1 + � :
/; �cos 2� + � sin 2��7=
7��  , 

  1 + � :
/; �cos 2/� + � sin 2/��=
7��  , 

  1 + � :
/; cos 2/�=
7�� + � � :
/; sin 2/�=

7�� , 
 

 Comparing Re and Im parts of both versions of �1 + 3�´�=
 we have 

 

Re: 2 cos � cos 
� =  1 + � :
/; cos 2/�=
7��  , 

Im: 2 cos � sin 
� = � :
/; sin 2/�=
7��  , 
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Hence  

tan 
� = sin 
�cos 
�  
∑ :
/; sin 2/�=7��1 + ∑ :
/; cos 2/�=7��  , 

  
∑ :
/; sin 2/�=7�1∑ :
/; cos 2/�=7�1  , 

  

 sin 2� + 
�
 − 1�2! sin 4� + 
�
 − 1��
 − 2�3! sin 6� + ⋯

1 + 
 cos 2� + 
�
 − 1�2! cos 4� + 
�
 − 1��
 − 2�3! cos 6� + . 
 

Exercise: If possible, find similar identities to the above using �1 − 3�´�=
, �1 + �´�=

, and 

�1 − �´�=
. 

 

5) Suppose we want to show that, for any real numbers p and m,  

3m� ÎÏ»¾¿ k !j� � 1j� − 1&m = 1 . 
How do we start? We could take the mth roots on both sides, and then work 1�/m. Or we could 

try to convert 3�.ÎÏ»¾¿ k in Cartesian form and then combine it with �j� � 1�/�j� − 1�, and then 

take the mth roots. However, given the power and ease of use of the exponential form of a 

complex number, it makes sense to try to convert �j� � 1�/�j� − 1� into expoenential form. In 

fact, our first thought when working with complicated complex numbers problems should be 

to convert everything into exponential form. For more simple problems you can also consider 

converting a complex number into polar form, if you wish. Therefore,  

• let ��  1 + j�. Then ��  |��|. For arg���� we need to consider the cases of j ≥ 0 

and j < 0, so as to take the correct argument. In both cases we have ��  arg���� =tan�� j; 

• let �3  �1 + j�. Then �3  |�3|. As above, for arg��3� we need to consider the cases 

of j ≥ 0 and j < 0, so as to take the correct argument. In both cases we have �3 arg��3� = tan���−j� − � = − tan���j� − �; 

• Notice that ��  �3, and also that there is no need to evaluated these since they will 

cancel out by the division; 
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Hence we have 

3m� ÎÏ»¾¿ k !j� � 1j� − 1&m
  3m� ÎÏ»¾¿ k Z � »¼½¾¿ k���»¼½¾¿ k���[

m , 
  3m� ÎÏ»¾¿ k�� »¼½¾¿ k. ��»¼½¾¿ k����m , 
  3m� ÎÏ»¾¿ k�3� »¼½¾¿ k����m , 
  3m� ÎÏ»¾¿ k. 3m� »¼½¾¿ k�m�� , 
  3m��ÎÏ»¾¿ k?»¼½¾¿ k�. �m�� . 

 

By standard inverse trig work (left as an exercise), cot�� j + tan�� j = �/2, for all real values 

of p. Therefore   

3m��ÎÏ»¾¿ k?»¼½¾¿ k��m��  3m��/3�m�� = 1 = 1 , 
this being true for all values of m. hence we have shown that  

3m� ÎÏ»¾¿ k !j� � 1j� − 1&m = 1 

for all real values of p and m. 

 

1.19 Properties of |�| and ÐÑÒ��� 
1.19.1 Properties of |�| 
We will start with some simple proofs in order to illustrate the nature of presenting proofs. 

Once we have got used to this we can move onto proving more complicated statements. 

 

Property 1: Given �  a � �b prove |��|  |�|. 
Proof: Since  �  a � �b we have ��  �a � �b. Then |�|  Ua3 � b3 and |��| 
U��a�3 � ��b�3  Ua3 � b3. Hence |��|  |�|. ∎ 

 

Comment: The nature of a proof is that every mathematical statement beyond what is already 

given, or known prior, has to be explcitely developed. So, since �� is not given to us we must 

develop the step which leads to ��. Now, this may seem trivial, but it is in the nature of proofs 

that we should do this explicitly, hence the reason for me writing “��  �a � �b”. More than 

this, I have presented this step in such a way as to read as a direct consequence of �  a � �b. 
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The same reasoning applies to justify writing down the expression for |�| and |��|, with the 

added specificity of presenting the latter as U��a�3 � ��b�3 and not as Ua3 � b3. This is to 

explicitly illustrate the effect of the mathematical operations on the negative components, and 

that such operations simplify in such a way as to be equal to the positive components. We then 

state this equality explicitely as the last statement of the proof.  

 

Property 2: Given �  a � �b it is left as an exercise to prove |�|  |�∗|. 
 

Property 3: Given �  a � �b prove �∗�  |�|3.  

Proof: Since �  a � �b we have �∗  a � �b. Therefore �∗�  �a � �b��a � �b�  a3 � b3. But 

|�|3  �Ua3 � b3�3  a3 � b3. Hence �∗�  |�|3. ∎ 

 

Property 4: Given two complex numbers � and ` prove |�. `| = |�||`|. 
Proof: Let �  a � �b and `  Ó � �c. Then |�|  Ua3 � b3 and |`|  √Ó3 � c3. Hence  

|�||`|  Ua3 � b3. UÓ3 + c3 = U�a3 + b3��Ó3 + c3� . 
Separately we have �. ` = �aÓ − bc� + ��ac + bÓ�, hence |�. `| = U�aÓ − bc�3 + �ac + bÓ�3. 

Expanding and simplifying this gives 

|�. `| = Ua3Ó3 + b3c3 + a3c3 + b3Ó3 = U�a3 + b3��Ó3 + c3� . 
Therefore |�. `| = |�||`|. ∎ 

 

Property 5: Given two complex numbers � and ` it is left as an exercise to prove |�/`| =|�|/|`|. 
 

Property 6: Given a complex numbers � prove �∗  1/� if and only if |�|  1.  

Proof: Let �  a � �b. Then  

1� = 1a + �b = 1a + �b . a − �ba − �b = a − �ba3 + b3 . 
If |�|  1 we have |�|  Ua3 � b3  1 implies a3 � b3  1. Hence  

1� = a − �b = �∗ 

as required.  
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On the other hand we can form the modulus of �∗  1/� thus giving |�∗|  |1/�|. By property 2 

we have |�∗|  |�|, hence we have |�|  |1/�|. By property 5 this becomes |�|  1/|�|. Cross-

multiplying by |�| we obtain |�|3  1 which implies |�|  1, as required. ∎ 

 

Comment: Here we have had to do two version sof the proof. Thje reason for this is in the 

wording “if and only if”. What this means is that i) given |�|  1 then �∗  1/�, and ii) given �∗  1/� then |�|  1. So we have to prove each statement leads to the other statement. 

 

Exercises:  

1) Given �  a � �b prove |�� � �3|3 � |�� � �3|3  2|��|3 + 2|�3|3 

2) Is it true that, for two complex number � and `, |�∗ � `|  |� � `∗|. If so, prove it, 

otherwise find a counterexample. 

 

1.19.2 Properties of arg��� 

Having gained some experience of using DeMoivre’s theorem we can now prove certain 

properties of the arguments of a complex number. There are two points which are worth 

highlighting when reading the proofs below: 

• We must remember that the principal argument of a complex number z is denoted � Arg��� where �� < Arg��� ≤ �.  

• The key in all of the proofs below is the way in which the periodicity 2/� is taken into 

account as part of the argument of a complex number, and the way in which this is analysed 

in order to make sure that our argument lies in ���, �S. As such, in nearly all the proofs 

below we first expand and simplify the given complex number, and then we take account 

of the periodicity of cos and sin of the simplified complex number. Finally we find the 

relevant values of / which bring the argument of this simplified complex number back into 

the interval ���, �S. 

 

Property 1: Arg��∗�  �Arg��� � 2/�, where /  0, 1. 

Proof: Let �  ��cos � + � sin ��. Then  

�∗  ��cos � − � sin �� , 
  ��cos�−�� + � sin�−��� , 
  ��cos�−� + 2/�� + � sin�−� + 2/��� . 
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By definition, � ∈ �−�, �S and also �� ∈ �−�, �S. Hence Arg��∗�  �Arg���. However, �  � 

implies ��  �� ∉ ���, �S. But �� � 2� = � ∈ �−�, �S, hence Arg��∗�  �Arg��� � 2� when �  �. Therefore  

 Arg��∗�  �Arg��� � 2/�, where /  0, 1. ∎ 

 

Comment: Property 1 can be illustrated as shown below 

 

Both � and �� lie in the interval ���, �S. 
 

 � lies in the interval ���, �S but −� = −� does not. 

 

Property 2: Arg����3�  Arg���� � Arg��3� � 2/�, for /  �1, 0, +1. 

Proof: Let ��  ���cos �� + � sin �3� and �3  �3�cos �3 + � sin �3�, where �� ∈ �−�, �S and �3 ∈�−�, �S. Then we have Arg����  �� and Arg��3�  �3.  

 

Then, ���3  ���3�cos �� + � sin ����cos �3 + � sin �3� , 
  ���3�cos��� + �3� + � sin��� + �3�� , 
  ���3�cos��� + �3 + 2/�� + � sin��� + �3 + 2/��� . 
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Hence  Arg���� � Arg��3�  �� � �3 � 2/� 

for some value / ∈ ℤ. 

 

Given that �� ∈ �−�, �S and �3 ∈ �−�, �S we have �� � �3 ∈ �−2�, 2�S. However, we want �� ��3 ∈ �−�, �S. So  

• for �� � �3 ∈ �−2�, −�S we have �� � �3 � 2/� ∈ �−2� + 2/�, −� + 2/�S.  

When /  1 we obtain �� � �3 � 2� ∈ �0, �S  which is within ���, �S. Hence  

Arg���� � Arg��3�  �� � �3 � 2� ; 
• for �� � �3 ∈ �−�, �S we have �� � �3 � 2/� ∈ �−� + 2/�, � + 2/�S. When /  0 we 

obtain �� � �3 ∈ �−�, �S which is our principal interval. Hence  

Arg���� � Arg��3�  �� � �3 ; 
• for �� � �3 ∈ ��, 2 �S we have we have �� � �3 � 2/� ∈ �� + 2/�, 2� + 2/�S. When / �1 we obtain �� � �3 � 2� ∈ �−�, 0S which is within ���, �S. Hence  

Arg���� � Arg��3�  �� � �3 � 2� . 
 

Therefore Arg����3�  Arg���� � Arg��3� � 2/�, for /  �1, 0, +1, depending upon whether �� � �3 is greater than �, lies in ���, �S, or is less than �� respectively. ∎ 

 

Comment 1: You might have thought that Arg����3�  Arg���� � Arg��3�. This is a mistake as 

we see from the proof above. It is an easy mistake to make, and highlights the fact that we need 

to be vigilant when it comes to dealing arguments of complex numbers. The reason is simply 

due to the periodic nature of cos and sin, and this must be taken into account at the appropriate 

stage in our proofs or calculations.  

 

Comment 2: Since it is generally likely that �� � �3 will lie outside the interval ���, �S we need 

to find out what “correction” needs to be made to bring �� � �3 back into this interval. Hence 

the need to study subintervals of ��2�, 2�S. These subintervals can be done “2� at a time”, in 

other words … , �−3�, −�S, �−�, �S, ��, 3�S, …. 

 

Example 1: 

Let ��  1 + � and �3  �1 + �. Then Arg����  �/4 and Arg��3�  3�/4, therefore Arg���� �Arg��3�  �. Also, ���3  �5 therefore Arg����3�  �. Hence Arg����3�  Arg���� � Arg��3�. 
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Example 2: Let ��  �2 − 2� and �3  1 − �. Then Arg����  �3�/4 and Arg��3�  ��/4, 

therefore Arg���� � Arg��3�  ��. But ���3  �4 implying Arg����3�  �. Therefore Arg����3�  Arg���� � Arg��3� � 2�. 

 

Below are graphs representing the complex numbers for the above two examples. 

   

 Graph for example 1 Graph for example 2 

 

Example 3: 

Let ��  � and �3  �1 + �. Then Arg����  �/2 and Arg��3�  3�/4, therefore Arg���� �Arg��3�  5�/4. But ���3  �1 − � implying Arg����3�  �3�/4. Therefore Arg����3� Arg���� � Arg��3� � 2�. 

 

Below are graphs representing the complex numbers for the above example 

 

Graph for example 3 
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Exercise: 

Consider �  � and �  �1 + �. For both complex numbers find Arg��3� and Arg��� � Arg���. 
What can you say about Arg��� � Arg��� and 2 Arg���? What is the correct result for Arg��� �Arg���? What is the relationship between Arg��3� and Arg��� � Arg���. Prove this and state a 

similar result for Arg��=�. 

 

Property 3: Arg���/�3� = Arg���� − Arg��3� + 2/�, where /  �1, 0, +1. 

Proof: This is left as an exercise. The proof follows exactly the same logic as that shown for the 

proof of property 2.  ∎ 

 

Property 4: Arg�1/�� = − Arg���. 

Proof: Let �  ��cos � + � sin ��. Then �  Arg���. Hence, 1/� = ��� = ����cos � + � sin ���� 

implying  

���  ����cos�−�� + � sin�−��� =  ����cos�−� + 2/�� + � sin�−� + 2/��� . 
Therefore Arg�1/�� = −� + 2/�. Since �� ∈ �−�, �S, / has to be zero. Hence Arg�1/�� = −�, 

i.e. Arg�1/�� = − Arg���. ∎ 

 

Property 5: Arg��. �3Õ � = Arg���� − Arg��3� + 2/�, for /  �1, 0, +1 

Proof: This is left as an exercise. It follows the same logic as property 2. ∎ 

 

Property 6: Arg��/�∗� = 2 Arg��� + 2/�, for /  �1, 0, +1 

Proof: This is left as an exercise. ∎ 

 

Property 7: Arg��=�  
 Arg��� � 2/�, for /  �1, 0, +1 

Proof: This is left as an exercise. ∎ 

 

Property 8: Arg��3/��� = 2/� − Arg���/�3�, for /  �1, 0, +1 

Proof: Let ��  ���cos �� + � sin ��� and �3  �3�cos �3 + � sin �3�, where �� ∈ �−�, �S and �3 ∈�−�, �S. Then we have Arg����  �� and Arg��3�  �3.  
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Then, �3��  
�3�� cos �3 + � sin �3cos �� + � sin ��  , 

  
�3�� �cos �3 + � sin �3��cos �� + � sin ����� , 

  
�3�� �cos �3 + � sin �3��cos�−��� + � sin�−���� , 

  
�3�� �cos��3 − ��� + � sin��3 − ���� , 

  
�3�� �cos��3 − �� + 2/�� + � sin��3 − �� + 2/��� . 

Hence  

Arg !�3��&  �3 � �� � 2/� 

for some value / ∈ ℤ. 

 

Given that �� ∈ �−�, �S and �3 ∈ �−�, �S we have �3 � �� ∈ �−2�, 2�S. However, we want �3 ��� ∈ �−�, �S. So  

• for �3 � �� ∈ �−2�, −�S we have �3 � �� � 2/� ∈ �−2� + 2/�, −� + 2/�S. When /  1 

we obtain �3 � �� � 2� ∈ �0, �S  which is within ���, �S. Therefore ���� � �3� � 2� ∈�0, �S. Hence  

Arg !�3��&  �3 � �� � 2� = 2� − ��� − �3� ; 
• for �3 � �� ∈ �−�, �S we have �3 � �� � 2/� ∈ �−� + 2/�, � + 2/�S. When /  0 we 

obtain �3 � �� ∈ �−�, �S which is our principal interval. Therefore ���� � �3� ∈ �0, �S. 

Hence  

Arg !�3��&  �3 � ��  ���� � �3� ; 
• for �3 � �� ∈ ��, 2 �S we have we have �3 � �� � 2/� ∈ �� + 2/�, 2� + 2/�S. When / �1 we obtain �3 � �� � 2� ∈ �−�, 0S which is within ���, �S. Therefore ���� � �3� �2� ∈ �−�, �SHence  

Arg !�3��&  �3 � �� � 2� = −2� − ��� − �3� ; 
 Hence Arg��3/��� = 2/� − Arg���/�3�, for /  �1, 0, +1 ∎ 
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Exercise: Prove arg��∗� = 2/� − arg���, and find the range of values of / for which this is valid. 

 

Property 9: Arg�� � �∗�  ±�/2, where � is not pure real. 

Proof: Let �  a � �b. Then �∗  a � �b. Therefore, � � �∗  a � �b � �a � �b�  2�b. Hence Arg�� � �∗�  tan���2b/0� = ±�/2. If �  a then � � �∗  0, therefore Arg�� � �∗� tan���0/0� which is undefined. Hene Arg�� � �∗�  ±�/2, where � is not pure real. ∎ 

 

Exercise: Find a similar result for Arg�� � �∗� and prove it. What constraints, if any, are there 

on �? 

 

Property 10: Arg����  Arg��� � /�, where /  ±1 

Proof: We proceed on a case by case basis by considering the argument of � and �� for a ≶ 0 

and b ≶ 0. Hence  

• for �  a � �b we have 

i) Arg���  tan���b/a� for a > 0, b > 0 and a > 0, b < 0 illustrated as diagrams 

(a) and (b) below.  

ii) Arg���  tan���b/a� ± � for a < 0, b > 0 and for a < 0, b < 0, illustrated as 

diagrams (c) and (d) below. 

 

• for ��  �a � �b we have 

i) Arg����  tan���b/a� for a < 0, b < 0 and a < 0, b > 0 illustrated as diagrams 

(a) and (b) below.  

ii) Arg����  tan���b/a� ± � for a > 0, b < 0 and a > 0, b > 0 illustrated as 

diagrams (c) and (d) below.  

 

  

(a) (b) 
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(c) (d) 

 

So in general we have Arg����  Arg��� � /�, where /  ±1 ∎ 

 

Exercises: Prove i) Arg��. �∗� = 0, ii) Arg�� � �∗�  0. 

 

Property 11: Arg��� � �3�/�� − ���� = �3 Arg���/�3� for three distinct complex numbers 

��, �3, �  

Proof: Since the argument of a complex number remains unaffected by its modulus/length we 

let ��  cos �� + � sin ��, �3  cos �3 + � sin �3, and �  cos � + � sin �  without any loss of 

generality. Therefore, Arg����  ��, Arg��3�  �3, Arg�� �  � .  

Also,  

� � �3  cos � + � sin � − cos �3 − � sin �3 , 
  cos � − cos �3 + ��sin � − sin �3� . 

 

Using the factor formula from the trig family of identities we obtain 

  

� � �3  �2 sin !� + �32 & sin !� − �32 & + � !2 sin !� − �32 & cos !� + �32 && , 
  2 sin !� − �32 & *cos !� + �32 & − � sin !� + �32 &+ , 
  2 sin !� − �32 & *cos !− � + �32 & + � sin !− � + �32 &+ . 

 

Similarly  � − �� = 2 sin !� − ��2 & *cos !− � + ��2 & + � sin !− � + ��2 &+ . 
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Hence  

� � �3� � ��  	 cos :− � + �32 ; + � sin :− � + �32 ;
cos :− � + ��2 ; + � sin :− � + ��2 ; 

 

where 	  sin :´,�´Ø3 ; / sin :´,�´¿3 ;. Therefore  

 � � �3� � ��  	 !cos !− � + �32 & + � sin !− � + �32 && !cos !− � + ��2 & + � sin !− � + ��2 &&�� , 
  	 !cos !− � + �32 & + � sin !− � + �32 && !cos !� + ��2 & + � sin !� + ��2 && , 
  	 !cos !− � 2 − �32 + � 2 + ��2 & + � sin !− � 2 − �32 + � 2 + ��2 && , 
  	 !cos !��2 − �32 & + � sin !��2 − �32 && , 
  	 !cos !��2 − �32 + 2/�& + � sin !��2 − �32 + 2/�&& . 

 

Hence  Arg��� � �3�/�� − ���� = ��2 − �32 + 2/� , 
 

for some / ∈ ℤ. Since ��, �3 ∈ �−�, �S, �� � �3 ∈ �−2�, 2�S implying ��� � �3�/2 ∈ �−�, �S. 

Therefore /  0 and we have Arg��� � �3�/�� − ���� = ��� − �3�/2, i.e. 

Arg��� � �3�/�� − ���� = 12 �Arg���� − Arg��3�� = 12 Arg !���3& . 
 ∎ 

 

 

 


